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Challenges for modeling variable renewable energy (VRE)

=" \Wind and solar are at the center of most scenarios for decarbonization of
electric generation

= Decreasing returns to scale driven by intermittency in particular is key for
understanding the potential contribution of VRE relative to other options

" Yet traditional capacity planning models are not equipped to handle their
spatial and temporal variation

" One major methodological challenge is solving for capacity investments
over an extended time horizon while also maintaining sufficient spatial and
intra-annual resolution

= US-REGEN uses the representative hour method for dynamic simulations to
2050, but complements with static simulations of a single year using 8760



US-REGEN Model Design
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Capacity Expansion economic
model for policy and regulation
analysis to 2050

Endogenous dispatch and
investment in generation and
transmission capacity

Regional detail and
representative hour approach to
capture intra-annual variation of
load/wind/solar

Informed by EPRI data and

expertise, used extensively for
Clean Power Plan and longer-
term decarbonization analysis
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GW Residual Load

Residual load duration curve shifts with increasing VRE
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This illustration shows
joint distribution between
US total load and US
average wind output

Timing of contribution
relative to load is the key
factor driving capacity
needs and economic value
of VRE investments

Any aggregation of intra-
annual distribution must
preserve the residual load
duration curve

l ELECTRIC POWER
RESEARCH INSTITUTE



Fraction of Installed Wind Capacity

Residual load duration curve shifts with increasing VRE
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This illustration shows
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Timing of contribution
relative to load is the key
factor driving capacity
needs and economic value
of VRE investments

Any aggregation of intra-
annual distribution must
preserve the residual load
duration curve
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Overview of US-REGEN “representative hours” method

@ Select “extreme” hours @ Select “cluster” hours @ Hour weighting
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Goal: To strategically select annual hours that capture key
distributional requirements for load, wind, and solar time series
across several interconnected model regions
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Contrast with a simpler alternative method

" Traditional approach: Simple representation of load duration curve with
small number of segments
— Reasonable approximation in conventional power system with dispatchable assets
— However, this approach has trouble capturing wind/solar variability

* Many models attempt to capture load curve and assign wind/solar
coefficients based on average resource availability during corresponding
load period

= Shortcoming of “seasonal average” approach is that it insufficiently
describes both individual distributions of resource availability and joint
distribution



Representative hours preserve resource distributions
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Wind Resource Duration Curve for Texas

8760 Hourly Data
103 Segment Data (US-REGEN)

9 Segment Data (Seasonal Average Method)
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Solar Resource Duration Curve for Texas
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Representative hours preserve residual load curves

Residual Load Duration Curve for Texas Residual Load Duration Curve for Texas
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Representative hours preserve marginal value
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[ Based on analysis of capacity rental and dispatch in a static version of US-REGEN ]
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Implications for dynamic simulation: Capacity build to 2050
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= Comparison between reference
scenario and two stylized policy
cases with a $25 and $50/tCO2 tax

= Renewable deployment increases
with more stringent CO2 policy, but
less penetration with representative
hours than with seasonal average

= Representative hours also indicate
larger role of for supporting capacity
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Another example: Deep Decarbonization Scenario

7500

US Generation US Capacity

6000

D
ul
o
o

Annual TWh

w
o
o
o

Nuclear

Gas

1500

2015 2020 2025 2030 2035 2040 2045 2050 2015 2020 2025 2030 2035 2040 2045 2050

2400

2000

1600

1200

Installed GW

800

400

0

12 l= ELECTRIC POWER
© 2016 Electric Power Research Institute, Inc. All rights reserved. E El RESEARCH INSTITUTE



13

What’s not discussed in the above but also important

" [ncorporating storage investments into dynamic planning model

= Potential flexibility constraints on thermal capacity
— Hourly ramping requirements
— Unit commitment constraints

= Potential operational constraints related to inertia and frequency
control during moments of high instantaneous VRE penetration

= Integration with an evolving demand-side with smarter devices,
more electrification, and potential responsiveness
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Together...Shaping the Future of Electricity

© 2016 Electric Power Research Institute, Inc. All rights reserved. El El

ELECTRIC POWER
RESEARCH INSTITUTE



