Net energy analysis: a policy analysis perspective

Net Energy Analysis Workshop Global Climate and Energy Project Stanford University April 1, 2015 / Palo Alto, CA

by Howard Gruenspecht, Deputy Administrator

U.S. Energy Information Administration

Improvements in energy intensity largely offset impact of growth in GDP leading to slow growth in energy use

U.S. primary energy consumption quadrillion Btu

Source: EIA, current thinking

Growth in electricity use slows, but electricity use still increases

Source: EIA, current thinking

```
Net energy analysis: a policy analysis perspective April 1, 2015
```

CO_2 emissions per dollar of GDP decline faster than energy use per dollar of GDP reflecting the shift to lower carbon fuels

Source: EIA, current thinking

Coal Mining

Extraction of coal from the lithosphere

Average Efficiency: 94.57%

LEGEND (EXERGY): CHEMICAL NUCLEAR GRAVITATIONAL E.M. RADIATION KINETIC AND WORK THERMAL ELECTRICAL GRAVITATIONAL/CHEMICAL

INPUTS

Carrier	Exergy Flux (J/s)	Carbon Flux (g/s)	Citations
Pipeline Natural Gas	5.185e+09	7.700e+04	IEA Energy Statistics
Gasoline, Diesel, Kerosine	5.285e+09	9.936e+04	IEA Energy Statistics
Electricity	6.984e+09	0.000e+00	
Unmined Coal	3.860e+12	1.158e+08	
TOTAL	3.877e+12	1.160e+08	

OUTPUT

Carrier	Exergy Flux (J/s)	Carbon Flux (g/s)	Citations
Atmosphere	0.000e+00	5.966e+06	
Mined Coal	3.667e+12	1.100e+08	IEA Energy Statistics
TOTAL	3.667e+12	1.160e+08	

Coal-Fired Power Plants

Average Efficiency: 30.13%

LEGEND (EXERGY): CHEMICAL NUCLEAR GRAVITATIONAL E.M. RADIATION KINETIC AND WORK THERMAL ELECTRICAL GRAVITATIONAL/CHEMICAL

INPUTS

Carrier	Exergy Flux (J/s)	Carbon Flux (g/s)	Citations
Mined Coal	2.307e+12	6.921e+07	IEA Energy Statistics
TOTAL	2.307e+12	6.921e+07	

OUTPUT

Carrier	Exergy Flux (J/s)	Carbon Flux (g/s)	Citations
Atmosphere	0.000e+00	6.921e+07	
Electricity	6.950e+11	0.000e+00	IEA Energy Statistics
TOTAL	6.950e+11	6.921e+07	

For more information

U.S. Energy Information Administration home page | www.eia.gov

Annual Energy Outlook | <u>www.eia.gov/aeo</u>

Short-Term Energy Outlook | <u>www.eia.gov/steo</u>

International Energy Outlook | www.eia.gov/ieo

Monthly Energy Review | <u>www.eia.gov/mer</u>

Today in Energy | www.eia.gov/todayinenergy

State Energy Profiles | http://www.eia.gov/state

Drilling Productivity Report | http://www.eia.gov/petroleum/drilling/

Ethanol Production

Currently, most ethanol is produced from biomass feedstocks (primarily corn and sugar cane), and some fossil fuel is used to drive the conversion and purification processes. However, ethanol could also be made from fossil feedstocks.

Average Efficiency: 37.69%

LEGEND (EXERGY):	CHEMICAL	NUCLEAR	GRAVITATIONAL	E.M. RADIATION	KINETIC AND WORK	THERMAL	ELECTRICAL	GRAVITATIONAL/CHEMICAL
------------------	----------	---------	---------------	----------------	------------------	---------	------------	------------------------

INPUTS

Carrier	Exergy Flux (J/s)	Carbon Flux (g/s)	Citations
Pipeline Natural Gas	8.089e+09	1.201e+05	Ethanol can contribute to energy and
Mined Coal	1.092e+10	3.276e+05	Ethanol can contribute to energy and
Solid Biofuel	5.460e+10	1.365e+06	WEC Survey of Energy Resources
TOTAL	7.361e+10	1.813e+06	

Agriculture Farming. All aspects from primitive gathering of fruits and wood through major industrial crop and animal farms

Average Efficiency: 34.72%

LEGEND (EXERGY): CHEMICAL NUCLEAR GRAVITATIONAL E.M. RADIATION KINETIC AND WORK THERMAL ELECTRICAL GRAVITATIONAL/CHEMICAL

INPUTS

Carrier	Exergy Flux (J/s)	Carbon Flux (g/s)	Citations
Chemicals	2.060e+10	3.873e+05	
Electricity	3.000e+10	0.000e+00	IEA Energy Statistics
Gasoline, Diesel, Kerosine	1.057e+11	1.987e+06	
Plant Matter	5.468e+12	1.367e+08	Global patterns in human consumption
TOTAL	5.625e+12	1.391e+08	

OUTPUT

Carrier	Exergy Flux (J/s)	Carbon Flux (g/s)	Citations
Atmosphere	0.000e+00	9.026e+07	
Textiles	1.359e+10	3.398e+05	Cotton and Wool Situation and Outloo
Solid Biofuel	8.337e+11	2.084e+07	IEA Energy Statistics
Raw Food	1.106e+12	2.764e+07	The Biomass Metabolism of the Food S
TOTAL	1.953e+12	1.391e+08	

