

# Development of Regional Power Sector Coal Fuel Costs (Prices) for the Short-Term Energy Outlook (STEO) Model

April 2017















| analytical<br>independe<br>in this rep | t was prepared by the U.S. Energy agency within the U.S. Departmenent of approval by any other office ort therefore should not be constructed agencies. | nt of Energy. By law, E<br>or or employee of the | IA's data, analyses, and<br>United States Governm | forecasts<br>ent. The v |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-------------------------|

i

# **Table of Contents**

| 1. Overview                                                                                     | 1   |
|-------------------------------------------------------------------------------------------------|-----|
| 2. Coal Prices in the Current STEO Model                                                        | 5   |
| A. Introduction                                                                                 | 5   |
| B. Coal Price Equations                                                                         | 5   |
| 1. Composite Spot Price                                                                         | 5   |
| 2. Electric Power Sector Coal Price                                                             | 6   |
| 3. Proposed Regional Coal Prices for STEO Model                                                 | 8   |
| A. Introduction                                                                                 |     |
| B. Regional Indexing Method                                                                     | 9   |
| 1. Monthly Index                                                                                | 9   |
| 2. Annual Index                                                                                 | 10  |
| 2. Application of Index to Determine Regional Coal Prices                                       | 11  |
| C. Econometric Equations for Each Regional Price and a National Level Price Forecast Derived as | s a |
| Weighted Composite of the Regional Price Forecasts                                              | 12  |
| 1. Regional Equations                                                                           |     |
| 2. Composite National Price Forecast                                                            | 13  |
| 4. Forecast Evaluations                                                                         | 16  |
| A. Northeast Region Prices                                                                      | 16  |
| B. Midwest Region Prices                                                                        | 19  |
| C. South Region Coal Prices                                                                     | 21  |
| D. West Region Coal Prices                                                                      | 24  |
| E. U.S. Coal Prices                                                                             | 26  |
| Appendix A. Variable Definitions, Units, and Sources                                            | 29  |
| Appendix B. Eviews Code and Model Program File                                                  | 31  |
| Appendix C. Regression Results                                                                  | 34  |

# **Table of Tables**

| Table 1. Midwest Region Fuel Index, two-year moving average and three-year moving average, f | for the |
|----------------------------------------------------------------------------------------------|---------|
| month of February                                                                            | 10      |
| Table 2. Midwest Region Fuel Index, Annual average and values assigned to all months         | 11      |
| Table 3. Actual and coal price forecasts, annual totals                                      | 17      |
| Table 4. Actual and coal price forecasts, annual totals                                      | 20      |
| Table 5. Actual and out-of-sample coal price forecasts, annual totals                        | 22      |
| Table 6. Actual and out-of-sample coal price forecasts, annual totals                        | 25      |
| Table 7. Actual and out-of-sample coal price forecasts, annual totals                        | 28      |
| Table A1. Variable Definitions, Units, and Sources                                           | 30      |
| Table A2. Units key                                                                          | 31      |
| Table A3. Sources key                                                                        | 31      |
| Table C1. CLSPUUS, Coal spot price, regression results                                       | 35      |
| Table C2. CLEUDUS, Electric power sector coal price, regression results                      | 36      |
| Table C3. FCCOAL_NE, Electric power sector coal price, Northeast Region, regression results  |         |
| Table C4. FCCOAL_MW, Electric power sector coal price, Midwest Region, regression results    |         |
| Table C5. FCCOAL_SO, Electric power sector coal price, South Region, regression results      |         |
| Table C6. FCCOAL_WE, Electric power sector coal price, West Region, regression results       | 40      |

# **Table of Figures**

| Figure 1. Short-Term Energy Outlook Coal Module (production, trade, power sector stocks)    | 2  |
|---------------------------------------------------------------------------------------------|----|
| Figure 2. Short-Term Energy Outlook Coal Module (consumption, consumer stocks)              | 3  |
| Figure 3. Short-Term Energy Outlook Coal Module (coal coke)                                 | 3  |
| Figure 4. Short-Term Energy Outlook Coal Module (prices)                                    | 4  |
| Figure 5. Composite spot price, Jan. 2008 - Dec. 2015                                       | 6  |
| Figure 6. Electric power sector coal price, Jan. 2008 - Dec. 2015                           | 7  |
| Figure 7. U.S. Census Regions and Divisions                                                 | 8  |
| Figure 8. Northeast region coal price forecast versus actual, January 2012 – December 2015  | 17 |
| Figure 9. Northeast region coal price forecast versus actual, January 2012 – December 2015  | 17 |
| Figure 10. Northeast region coal price forecast versus actual, January 2012 – December 2015 | 18 |
| Figure 11. Northeast region coal price forecast versus actual, January 2012 – December 2015 | 18 |
| Figure 12. Midwest region coal price forecast versus actual, January 2012 – December 2015   | 19 |
| Figure 13. Midwest region coal price forecast versus actual, January 2012 – December 2015   | 20 |
| Figure 14. Midwest region coal price forecast versus actual, January 2012 – December 2015   | 20 |
| Figure 15. Midwest region coal price forecast versus actual, January 2012 – December 2015   | 21 |
| Figure 16. South region coal price forecast versus actual, January 2012 – December 2015     | 22 |
| Figure 17. South region coal price forecast versus actual, January 2012 – December 2015     | 22 |
| Figure 18. South region coal price forecast versus actual, January 2012 – December 2015     | 23 |
| Figure 19. South region coal price forecast versus actual, January 2012 – December 2015     | 23 |
| Figure 20. West region coal price forecast versus actual, January 2012 – December 2015      | 25 |
| Figure 21. West region coal price forecast versus actual, January 2012 – December 2015      | 25 |
| Figure 22. West region coal price forecast versus actual, January 2012 – December 2015      | 26 |
| Figure 23. West region coal price forecast versus actual, January 2012 – December 2015      | 26 |
| Figure 24. U.S. coal price forecast versus actual, January 2012 – December 2015             | 27 |
| Figure 25. U.S. coal price forecast versus actual, January 2012 – December 2015             | 28 |
|                                                                                             |    |

## 1. Overview

The U.S. Energy Information Administration's *Short-Term Energy Outlook* (STEO) produces monthly projections of energy supply, demand, trade, and prices over a 13-24 month period. Every January, the forecast horizon is extended through December of the following year. The STEO model is an integrated system of econometric regression equations and identities that link data on the various components of the U.S. energy industry together in order to develop consistent forecasts. The regression equations are estimated and the STEO model is solved using the EViews 9.5 econometric software package from IHS Global Inc. The model consists of various modules specific to each energy resource. All modules provide projections for the United States, and some modules provide more detailed forecasts for different regions of the country.

The coal module provides forecasts of coal supply (production, stocks, waste coal), trade (imports and exports), consumption, prices, coal coke (production, consumption, trade, and stocks), and raw steel production. The coal module contains 73 equations, of which 23 are estimated regression equations. Some of the input variables to the coal module are exogenous, coming from other modules in the *STEO* model (e.g., natural gas and petroleum prices) or forecasts produced by other organizations (e.g., weather forecasts from the National Oceanic and Atmospheric Administration). A projection of national coal prices is developed using the coal module, which is passed to several other modules in STEO. The coal module, in conjunction with the STEO electricity fuel consumption module, returns a projection of national coal demand. Figure 1 provides a visual overview of the production, trade, and power sector stocks portions of the coal module. The current STEO coal module documentation can be found at <a href="http://www.eia.gov/forecasts/steo/documentation/steo\_coal.pdf">http://www.eia.gov/forecasts/steo/documentation/steo\_coal.pdf</a>.

Many equations in the coal module, as well as those proposed in this document, include monthly dummy variables to capture the normal seasonality in the data series. For example, JAN equals 1 for every January in the time series and is equal to 0 in every other month. Dummy variables for specific months may also be included in regression equations where the observed data may be outliers because of infrequent and unpredictable events such as hurricanes, survey error, or other factors. Generally, dummy variables are introduced when the absolute value of the estimated regression error is more than 2 times the standard error of the regression (the standard error of the regression is a summary measure based on the estimated variance of the residuals). No attempt was made to identify the market or survey factors that may have contributed to the identified outliers.

Dummy variables for specific months are generally designated Dyymm, where yy = the last two digits of the year and mm = the number of the month (from "01" for January to "12" for December). Thus, a monthly dummy variable for March 2002 would be D0203 (i.e., D0203 = 1 if March 2002, = 0 otherwise).

Dummy variables for specific years are designated Dyy, where yy = the last two digits of the year. Thus, a dummy variable for all months of 2002 would be D02 (i.e., D02= 1 if January 2002 through December 2002, 0 otherwise). A dummy variable might also be included in an equation to show a structural shift in the relationship between two time periods. Generally, these shifts are modeled using dummy variables designated DxxON, where <math>xx = the last two digits of the year at the beginning of the shift period. For example, D03ON = 1 for January 2003 and all months after that date, and D03ON = 0 for all months before 2003.

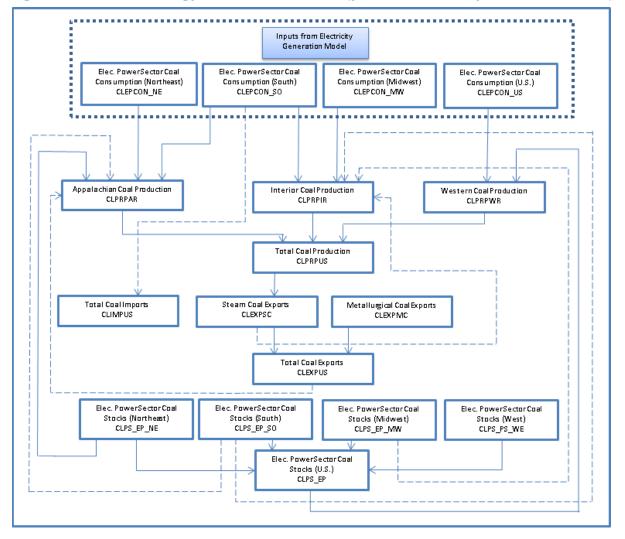



Figure 1. Short-Term Energy Outlook Coal Module (production, trade, power sector stocks)

Figure 2 provides a visual overview of the coal consumption and consumer stocks portions of the coal module. Inputs from the STEO electricity fuel consumption module, as well as the coal coke section (Figure 3), provide exogenous inputs to consumption and stocks.

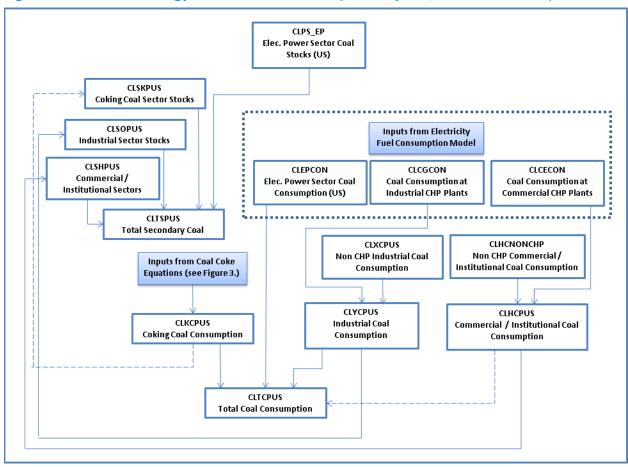



Figure 2. Short-Term Energy Outlook Coal Module (consumption, consumer stocks)

Figure 3. Short-Term Energy Outlook Coal Module (coal coke)

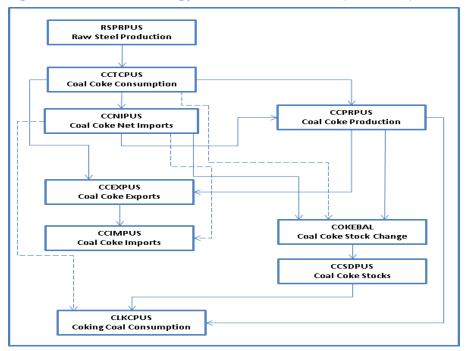
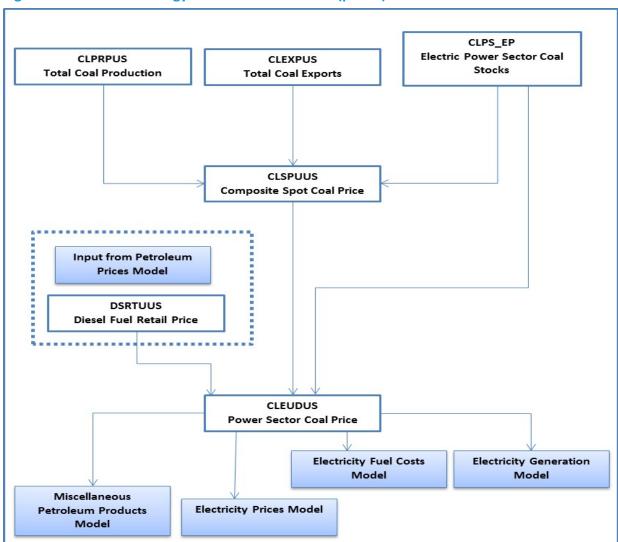




Figure 4 shows a visual overview of the prices section of the coal module. Other sections of the coal module (production, trade, and stocks) and the petroleum prices module provide exogenous inputs into this module. The projected electric power sector coal price then serves as an exogenous input to several STEO models: electricity generation model, electricity fuel costs model, electricity prices model, and the miscellaneous petroleum products model.



**Figure 4. Short-Term Energy Outlook Coal Module (prices)** 

## 2. Coal Prices in the Current STEO Model

#### A. Introduction

The coal prices section of the coal module contains two regression equations. The first equation is for a production-weighted, composite national coal spot price and the second is for an average price for coal delivered to the electric power sector.

EIA reports weekly spot prices, in dollars per short ton, for five domestic coal production regions in the *Coal Markets Report (CMR)*. The five regions are Central Appalachia (CAPP), Northern Appalachia (NAPP), Illinois Basin (ILB), Powder River Basin (PRB), and Uinta Basin (UIB). The historical data for the spot prices is proprietary, and EIA cannot release more than the current week's spot price data plus data from the previous four weeks. However, averaged historical data is permitted for publication by EIA, and EIA creates monthly averages for publication in STEO by averaging the weekly prices. When a week extends into a new month, the weekly price is allocated on a daily basis and incorporated into the appropriate months. The prices are then converted from dollars per ton to dollars per million Btu (MMBtu), using the Btu per ton conversion factors from the *CMR* report. Monthly proxies for coal production from each of the five commodity regions are developed using EIA data, and a composite spot price is calculated based on the prices and their corresponding production.

Prices for coal delivered to the electric power sector are reported in the *Electric Power Monthly (EPM)* in dollars per ton and in dollars per MMBtu. The *STEO* model uses the latter measure so price comparisons to other power sector fuels such as natural gas and petroleum, which are also reported in dollars per MMBtu, are consistent.

### **B. Coal Price Equations**

#### 1. Composite Spot Price

The composite spot price of coal has decreased by 46% over the past eight years from an average of \$2.26/MMBtu in 2008 to an average of \$1.23/MMBtu in 2015 as shown in Figure 5. The CAPP spot prices fell the most over this period (52%). Coal prices for the western producing regions declined significantly less compared with coal prices for the eastern regions. The PRB spot prices fell by 14% over the period and the UIB prices fell by 26%.

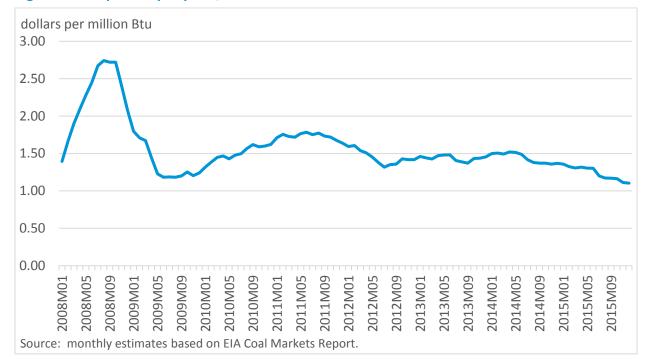



Figure 5. Composite spot price, Jan. 2008 - Dec. 2015

The monthly composite spot price of coal is estimated as a function of coal production, electric power sector coal stocks (inventories), and total coal exports (Equation 1).

#### Equation 1:

CLSPUUS = a0 + a1 \* CLPRPUS + a2 \* CLPS\_EP + a3 \* CLEXPUS + monthly dummy variables

#### Where:

CLSPUUS = production-weighted, composite spot coal price, dollars per million Btu;

CLPRPUS = total coal production, million short tons per day;

CLPS\_EP = total electric power sector coal stocks, million short tons; and

CLEXPUS = total coal exports, million short tons per day.

#### 2. Electric Power Sector Coal Price

The price of coal delivered to the electric power sector has increased by almost 8% over the past eight years from \$2.07/MMBtu in 2008 to \$2.22/MMBtu in 2015 as seen in Figure 6.

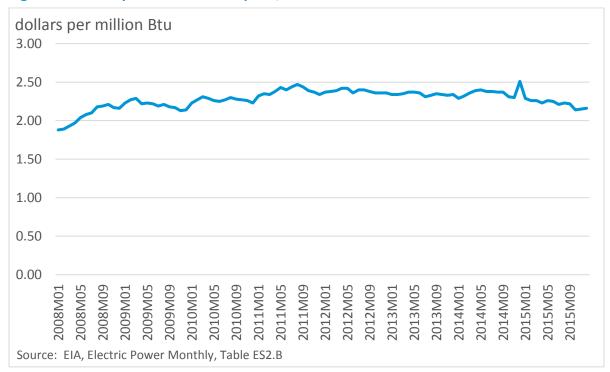



Figure 6. Electric power sector coal price, Jan. 2008 - Dec. 2015

The price of coal delivered to the electric power sector, as shown in Equation 2, is estimated as a function of the composite spot coal price, the retail diesel fuel price to reflect transportation costs, and power sector coal stocks (inventories). The resulting prices are passed to several other STEO modules.

#### Equation 2:

CLEUDUS = a0 + a1 \* CLSPUUS + a2 \* DSRTUUS + a3 \* CLPS\_EP + monthly dummy variables

#### Where:

CLEUDUS = power sector coal price, dollars per million Btu;

CLSPUUS = production-weighted composite spot coal price, dollars per million Btu;

DSRTUUS = diesel fuel retail price, cents per gallon;

CLPS\_EP = total electric power sector coal stocks, million short tons.

# 3. Proposed Regional Coal Prices for STEO Model

#### A. Introduction

As illustrated in Figure 4, the forecast of the national power sector coal price (CLEUDUS) serves as an endogenous input to several other modules of the STEO model. Equations in both the electricity generation and electricity price module that use CLEUDUS are constructed at a regional level. Other inputs to these equations are at a regional level, and it makes sense, both logically and econometrically, that the coal price (fuel cost) inputs be regional as well, if possible.

Several energy flows related to the power sector including: generation, energy consumption, fuel receipts, and fuel costs (energy prices) are currently available in the STEO database by regional aggregations. These flows are aggregated in relation to U.S. Census-defined groupings, either by the defined census division (smaller) or census region (larger). Figure 7 displays how the United States is divided along these lines.

**WEST MIDWEST NORTHEAST** Middle New West North Central East North Central Pacific Mountain Atlantic England WA ND MT MA OR MN RI SD ID CT WY IA NJ NE OH IN\ NV CA DE UT CO KS MO MD DC NM OK MS TX East South Central South West South Central SOUTH

Figure 7. U.S. Census Regions and Divisions

Historical electric power sector delivered coal fuel costs (prices) can be calculated for each census region. Based on this data, two different approaches to determining the regional prices of coal were evaluated. The first method indexes the regional prices to the currently forecasted national level price (CLEUDUS) based on the historical relationship between the national and regional delivered prices. The second method starts at the regional level by developing econometric equations for each regional price, and then applying a revised method for estimating the national level price forecast (CLEUDUS\_R) as a

weighted composite of the econometrically-derived regional prices to ensure consistency with regional price estimation.

## **B.** Regional Indexing Method

The regional indexing method generates a forecast of each region's delivered coal price based on the historical relationship of each region's price to the national delivered price, and applying this relationship to the forecasted values of the national price. The relationship (Index or ratio adjustment factor) between the regional delivered price and the national delivered price is defined in Index 1.

```
Index 1:
```

```
FCCOAL_INDX_Region = FCCOAL_Region / FCCOAL_US
```

#### Where:

```
FCCOAL_INDX_Region = Historically calculated index for a region FCCOAL_Region = Regional delivered coal price, cents per million Btu FCCOAL_US = National delivered coal price, cents per million Btu
```

#### And:

```
Region = NE (Northeast Region)
= MW (Midwest Region)
= SO (South Region)
= WE (West Region)
```

To extend the indexes through the forecast horizon, two methods were evaluated, one that used a moving monthly-average of the index and the other which used the last full year's average index.

#### 1. Monthly Index

Indexes of a two-year and a three-year moving average were considered for use in developing the regional delivered coal price forecasts. Although the two-year average would normally be sufficient to cover the entire forecast horizon, which is typically two years, the three-year average was considered for the instances when the forecast period is greater than two years. The two-year moving average for the index for a particular month of the year is defined in Index 2.

```
Index 2:
```

```
FCCOAL_INDX_Region_2YR = AVERAGE(FCCOAL_INDX_Region(-12), FCCOAL_INDX_Region(-24))
```

The three-year moving average for the index for a particular month of the year is defined in Index 3.

```
Index (3)
```

```
FCCOAL_INDX_Region_3YR = AVERAGE(FCCOAL_INDX_Region(-12), FCCOAL_INDX_Region(-24),
FCCOAL_INDX_Region(-36))
```

Where:

```
FCCOAL_INDX_Region_2YR = Two-year monthly moving average of index for a region FCCOAL_INDX_Region_3YR = Three-year monthly moving average of index for a region FCCOAL_INDX_Region(-12) = Historically calculated index for a region, 1-year ago FCCOAL_INDX_Region(-24) = Historically calculated index for a region, 2-years ago FCCOAL_INDX_Region(-36) = Historically calculated index for a region, 3-years ago
```

#### And:

Region = NE (Northeast Region) = MW (Midwest Region) = SO (South Region) = WE (West Region)

Table 1 provides an example, using the indexes calculated for the Midwest Region, of how the monthly moving averages would be calculated for the month of February. Missing values for the index are are omitted from the calculation of the averages; they are not treated as zero.

Table 1. Midwest Region Fuel Index, two-year moving average and three-year moving average, for the month of February

| Date          | FCCOAL_INDX_MW | FCCOAL_INDX_MW_2YR | FCCOAL_INDX_MW_3YR |
|---------------|----------------|--------------------|--------------------|
| February 2012 | 0.888211       | Not Shown          | Not Shown          |
| February 2013 | 0.893718       | Not Shown          | Not Shown          |
| February 2014 | 0.90944        | 0.890964           | Not Shown          |
| February 2015 | 0.909206       | 0.901579           | 0.897123           |
| February 2016 | 0.920211       | 0.909323           | 0.904122           |
| February 2017 |                | 0.914709           | 0.912952           |
| February 2018 |                | 0.920211           | 0.914709           |
| February 2019 |                | Not Calculated     | 0.920211           |

#### 2. Annual Index

An annual regional index method was also considered that would base the forecast values of the regional adjustment factors on the annual average value of the factors for the last full year for which is data available. Under this method index values for each month would be identical. The regional adjustment factors based on the annual average are calculated in Index 4.

#### Index 4:

```
FCCOAL_INDX_Region_ANN = AVERAGE(FCCOAL_INDX_Region(JanYR) FCCOAL_INDX_Region(FebYR), ..., FCCOAL_INDX_Region(DecYR))
```

#### Where:

FCCOAL\_INDX\_Region\_ANN = Annual average of historically calculated index for a region FCCOAL\_INDX\_Region(JanYR) = January value of historically calculated index for a region FCCOAL\_INDX\_Region(FebYR) = February value of historically calculated index for a region ... FCCOAL\_INDX\_Region(DecYR) = December value of historically calculated index for a region

#### And:

Region = NE (Northeast Region)

= MW (Midwest Region)

= SO (South Region)

= WE (West Region)

YR = Last year in which regional adjustment factor is available for a full year.

Table 2 provides an example, using the indexes calculated for the Midwest Region, of how the fixed, annual average is used to determine the forecasted index values.

Table 2. Midwest Region Fuel Index, Annual average and values assigned to all months

|      | Annual Average | Values Assigned to all months of year for |
|------|----------------|-------------------------------------------|
| YEAR | FCCOAL_INDX_MW | FCCOAL_INDX_MW_ANN                        |
| 2014 | 0.89928        | 0.89928                                   |
| 2015 | 0.90148        | 0.90148                                   |
| 2016 |                | 0.90148                                   |
| 2017 |                | 0.90148                                   |
| 2018 |                | 0.90148                                   |

#### 2. Application of Index to Determine Regional Coal Prices

Index-based forecasts, whether based on the monthly 2 or 3-year moving average, or the fixed annual average methods, were then generated by applying the forecasted index to the forecasted delivered coal price using Equation 3.

#### Equation 3:

FCCOAL Region IIndex = (FCCOAL INDX Region Index \* CLEUDUS) \* 100

#### Where:

FCCOAL\_Region\_IIndex = Forecasted regional delivered coal price, cents per million Btu FCCOAL\_INDX\_Region\_Index = Forecasted price index for a region CLEUDUS = Power sector coal price, dollars per million Btu

#### And:

```
Region = NE (Northeast Region)
= MW (Midwest Region)
= SO (South Region)
= WE (West Region)

Index = 2YR (two-year moving average)
= 3YR (three-year moving average)
= ANN (annual average)
```

# C. Econometric Equations for Each Regional Price and a National Level Price Forecast Derived as a Weighted Composite of the Regional Price Forecasts

The other method considered in generating regional delivered coal prices was to develop an econometric equation for each regional price and to subsequently derive a corresponding coal receipts weighted-average national price forecast based on the regional delivered coal prices.

#### 1. Regional Equations

The equations for each region, as shown in Equations 4 through 7, are estimated as a function of the composite spot coal price, the Henry Hub natural gas spot price, the retail diesel fuel price, and regional power sector coal stocks (inventories). Regional delivered natural gas prices would have been considered a substitute for the Henry Hub gas price, but they are currently not forecasted by the STEO model.

#### **Northeast Region**

The price of coal delivered to the electric power sector in the Northeast region is estimated as shown in Equation 4.

#### Equation 4:

```
FCCOAL_NE = a0 + a1 * (CLSPUUS*100) + a2 * (NGHHUUS*100) + a3 * DSRTUUS + a4 * CLPS_EP_NE + monthly dummy variables
```

#### Where:

FCCOAL\_NE = Northeast region power sector coal price, cents per million Btu

CLSPUUS = Production-weighted composite spot coal price, dollars per million Btu

NGHHUUS = Henry Hub natural gas spot price, dollars per million Btu

DSRTUUS = Diesel fuel retail price, cents per gallon

CLPS\_EP\_NE = Northeast region electric power sector coal stocks, million short tons

#### **Midwest Region**

The price of coal delivered to the electric power sector in the Midwest region is shown in Equation 5.

#### Equation 5:

```
FCCOAL_MW = a0 + a1 * (CLSPUUS*100) + a2 * (NGHHUUS*100) + a3 * DSRTUUS + a4 * CLPS_EP_MW + monthly dummy variables
```

#### Where:

FCCOAL\_MW = Midwest region power sector coal price, cents per million Btu
CLSPUUS = Production-weighted composite spot coal price, dollars per million Btu
NGHHUUS = Henry Hub natural gas spot price, dollars per million Btu
DSRTUUS = Diesel fuel retail price, cents per gallon
CLPS EP MW = Midwest region electric power sector coal stocks, million short tons

#### South Region

The price of coal delivered to the electric power sector in the South region is shown in Equation 6.

#### Equation 6:

```
FCCOAL_SO = a0 + a1 * (CLSPUUS*100) + a2 * (NGHHUUS*100) + a3 * DSRTUUS + a4 * CLPS_EP_SO + monthly dummy variables
```

#### Where:

FCCOAL\_SO = South region power sector coal price, cents per million Btu
CLSPUUS = Production-weighted composite spot coal price, dollars per million Btu
NGHHUUS = Henry Hub natural gas spot price, dollars per million Btu
DSRTUUS = Diesel fuel retail price, cents per gallon
CLPS\_EP\_SO = South region electric power sector coal stocks, million short tons

#### West Region

The price of coal delivered to the electric power sector in the West region is shown in Equation 7.

#### Equation 7:

```
FCCOAL_WE = a0 + a1 * (CLSPUUS*100) + a2 * (NGHHUUS*100) + a3 * DSRTUUS + a4 * CLPS_EP_WE + monthly dummy variables
```

#### Where:

FCCOAL\_WE = West region power sector coal price, cents per million Btu

CLSPUUS = Production-weighted composite spot coal price, dollars per million Btu

NGHHUUS = Henry Hub natural gas spot price, dollars per million Btu

DSRTUUS = Diesel fuel retail price, cents per gallon

CLPS\_EP\_WE = West region electric power sector coal stocks, million short tons

#### 2. Composite National Price Forecast

The regional fuel costs (prices) that were derived using indexes are developed in a manner similar to the econometrically derived national price forecasts, but the individual, econometrically-produced regional forecasts are not guaranteed to be related to the forecast national price. To ensure consistency between the regional and national price forecasts, the national price forecast should be derived from the regional forecasts. To accomplish this, a coal receipts-weighted average price forecasting equation was developed similar to the method used to derive the current national price.

Although data on coal receipts is available, the STEO model does not currently forecast these volumes, but coal receipt can be projected from projected consumption and inventory values:

Coal Receipts = Coal Consumption - Change in Coal Inventories.

This identity is not guaranteed to hold up if you aggregate at the level of individual plants, but the aggregated value can serve as a useful proxy for calculating receipts. The STEO model does currently forecast coal consumption and coal inventories by region. Below are proxy Equations (8-11) for coal receipts by region.

#### Equation 8:

#### Where:

CLRC\_EP\_NE\_TON = Proxy for Northeast region power sector coal receipts, million short tons
CLEPCON\_NE = Northeast region power sector coal consumption, thousand tons per day
ZSAJQUS = Number of days in the reference month
CLPS\_EP\_NE = Northeast region power sector coal stocks, million short tons
CLPS\_EP\_NE(-1) = Northeast region power sector coal stocks, million short tons, previous month

#### Equation 9:

#### Where:

CLRC\_EP\_MW\_TON = Proxy for Midwest region power sector coal receipts, million short tons
CLEPCON\_MW = Midwest region power sector coal consumption, thousand tons per day
ZSAJQUS = Number of days in the reference month
CLPS\_EP\_MW = Midwest region power sector coal stocks, million short tons
CLPS\_EP\_MW(-1) = Midwest region power sector coal stocks, million short tons, previous month

#### Equation 10:

$$CLRC_{EP}SO_{TON} = ((CLEPCON_SO / 1000) * ZSAJQUS) - (CLPS_EP_SO(-1) - CLPS_EP_SO)$$

#### Where:

CLRC\_EP\_SO\_TON = Proxy for South region power sector coal receipts, million short tons

CLEPCON\_SO = South region power sector coal consumption, thousand tons per day

ZSAJQUS = Number of days in the reference month

CLPS\_EP\_SO = South region power sector coal stocks, million short tons

CLPS\_EP\_SO(-1) = South region power sector coal stocks, million short tons, previous month

#### Equation 11:

```
CLRC_EP_WE_TON = ((CLEPCON_WE / 1000) * ZSAJQUS) - (CLPS_EP_WE(-1) - CLPS_EP_WE)
```

#### Where:

CLRC\_EP\_WE\_TON = Proxy for West region power sector coal receipts, million short tons CLEPCON\_WE = West region power sector coal consumption, thousand tons per day

ZSAJQUS = Number of days in the reference month

CLPS\_EP\_WE = West region power sector coal stocks, million short tons

CLPS\_EP\_WE(-1) = West region power sector coal stocks, million short tons, previous month

A proxy for total U.S. power sector coal receipts is calculated in Equation 12.

#### Equation 12:

```
CLRC_EP_US_TON = CLRC_EP_NE_TON + CLRC_EP_MW_TON + CLRC_EP_SO_TON + CLRC_EP_WE_TON
```

#### Where:

CLRC\_EP\_US\_TON = Proxy for total power sector coal receipts, million short tons;

CLRC\_EP\_NE\_TON = Proxy for Northeast region power sector coal receipts, million short tons;

CLRC\_EP\_MW\_TON = Proxy for Midwest region power sector coal receipts, million short tons;

CLRC\_EP\_SO\_TON = Proxy for South region power sector coal receipts, million short tons;

CLRC\_EP\_WE\_TON = Proxy for West region power sector coal receipts, million short tons.

The (receipt-weighted) price of coal delivered to the electric power sector is estimated as shown in Equation 13.

#### Equation 13:

```
FCCOAL_US = ((FCCOAL_NE * CLRC_EP_NE_TON) + (FCCOAL_MW * CLRC_EP_MW_TON) + (FCCOAL_SO * CLRC_EP_SO_TON) + (FCCOAL_WE * CLRC_EP_WE_TON)) / CLRC_EP_US_TON
```

#### Where:

FCCOAL\_NE = Northeast region power sector coal price, cents per million Btu

CLRC\_EP\_NE\_TON = Proxy for Northeast region power sector coal receipts, million short tons

FCCOAL\_MW = Midwest region power sector coal price, cents per million Btu

CLRC\_EP\_MW\_TON = Proxy for Midwest region power sector coal receipts, million short tons

FCCOAL\_SO = South region power sector coal price, cents per million Btu

CLRC\_EP\_SO\_TON = Proxy for South region power sector coal receipts, million short tons

FCCOAL\_WE = West region power sector coal price, cents per million Btu

CLRC\_EP\_WE\_TON = Proxy for West region power sector coal receipts, million short tons

CLRC\_EP\_WE\_TON = Proxy for total power sector coal receipts, million short tons

The forecast is converted to dollars per million Btu, which is the standard STEO unit, in Equation 14.

#### Equation 14:

```
CLEUDUS R = FCCOAL US / 100
```

#### Where:

CLEUDUS\_R = power sector coal price, dollars per million Btu FCCOAL\_US = power sector coal price, cents per million Btu

## 4. Forecast Evaluations

The results of the evaluation indicate that the best method for estimating the regional prices is the development of econometric equations to forecast the prices. Although the index-based forecasts, especially the annual index-based forecasts, were fairly accurate and easy to develop and maintain, they were more susceptible to prices that were significant outliers, such as the December 2014 West region price.


## **A. Northeast Region Prices**

Table 3 provides a comparison of the annual average forecasts and actual Northeast region coal prices for 2012 through 2015. The forecasts for 2012 had the largest difference from actual with the index-based forecasts around 8% larger and the econometric forecast being around 1% higher. Overall, the econometric forecasts were the closest for all years, with the forecast being within one cent or less of the actual price. The moving average forecasts were generally (seven out of eight instances) higher than actual, and did not address price volatility as robustly as the regional regression-based approach.

Table 3. Actual and coal price forecasts, annual totals (cents per million Btu)

|                                         | Year   |        |        |        |
|-----------------------------------------|--------|--------|--------|--------|
|                                         | 2012   | 2013   | 2014   | 2015   |
| Actual Price (FCCOAL_NE)                | 265.38 | 269.19 | 272.14 | 248.26 |
| Two-year Index Price (FCCOAL_NE_I2YR)   | 285.95 | 270.72 | 266.91 | 255.25 |
| Three-year Index Price (FCCOAL_NE_I3YR) | 284.99 | 274.27 | 272.46 | 252.42 |
| Annual Index Price (FCCOAL_NE_IANN)     | 286.57 | 260.70 | 271.62 | 255.73 |
| Econometric Equation (FCCOAL_NE)        | 267.20 | 268.70 | 271.98 | 248.26 |

Figure 8 through Figure 11 show the monthly actual and forecasted values for the Northeast region coal price.



Actual Price

Figure 8. Northeast region coal price forecast versus actual, January 2012 – December 2015



**-** • 2-year Index

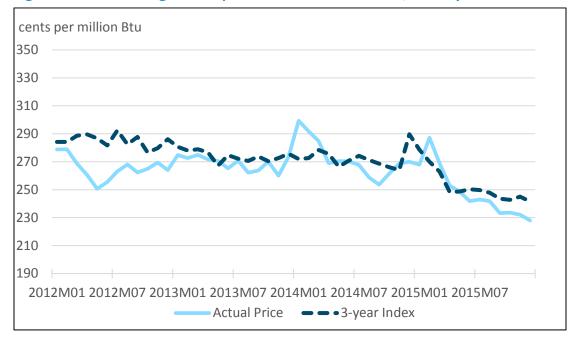



Figure 10. Northeast region coal price forecast versus actual, January 2012 – December 2015

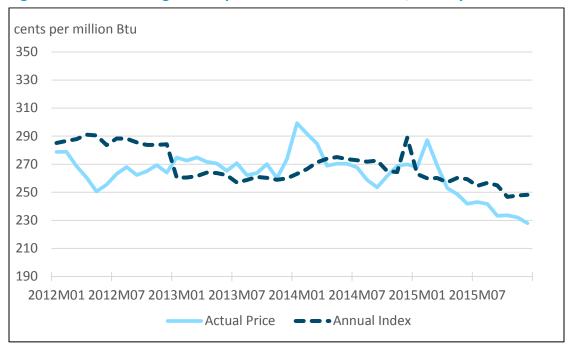
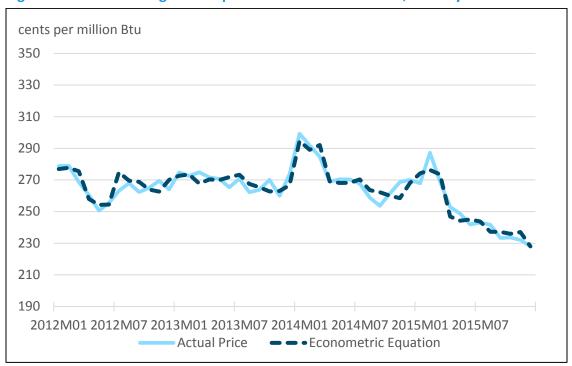




Figure 11. Northeast region coal price forecast versus actual, January 2012 – December 2015



#### **B. Midwest Region Prices**

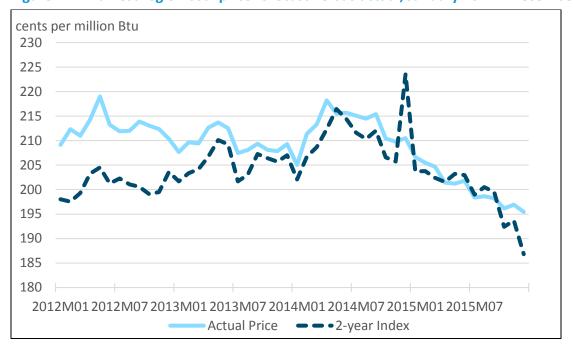

Table 4 provides a comparison of the annual average forecasts and actual Midwest region coal prices for 2012 through 2015. The forecasts for 2012 had the largest difference from actual ranging from 6% (13 cents) for the three-year index to just over 1% (3 cents) for the econometric forecast. Forecast differences for 2015 were less than 1% with the annual index forecast being 0.2% different. Overall, the econometric forecasts and the annual index forecasts were the closest for all years, with each having average differences around 1%, or 1 cent and 2 cents, respectively.

Table 4. Actual and coal price forecasts, annual totals (cents per million Btu)

|                                         | Year   |        |        |        |
|-----------------------------------------|--------|--------|--------|--------|
|                                         | 2012   | 2013   | 2014   | 2015   |
| Actual Price (FCCOAL_MW)                | 212.71 | 209.65 | 212.90 | 200.42 |
| Two-year Index Price (FCCOAL_MW_I2YR)   | 200.83 | 205.53 | 210.88 | 199.12 |
| Three-year Index Price (FCCOAL_MW_I3YR) | 199.67 | 201.25 | 208.66 | 198.66 |
| Annual Index Price (FCCOAL_MW_IANN)     | 206.33 | 208.93 | 211.53 | 199.95 |
| Econometric Equation (FCCOAL_MW)        | 209.70 | 210.85 | 211.90 | 201.04 |

Figures 12 through Figure 15 show the monthly actual and forecasted values for the Midwest region coal price.

Figure 12. Midwest region coal price forecast versus actual, January 2012 – December 2015



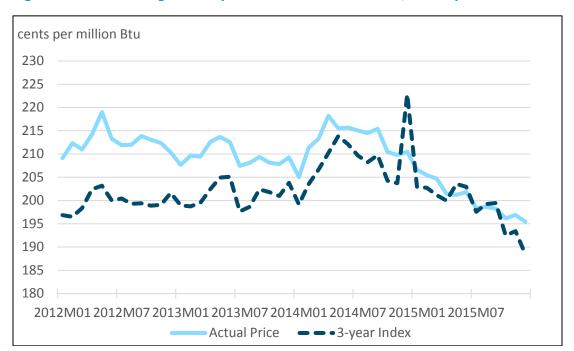
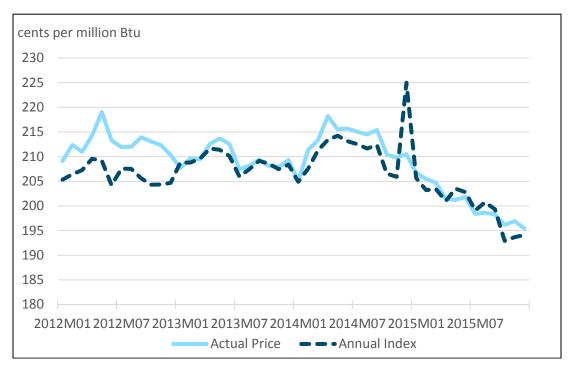




Figure 13. Midwest region coal price forecast versus actual, January 2012 – December 2015





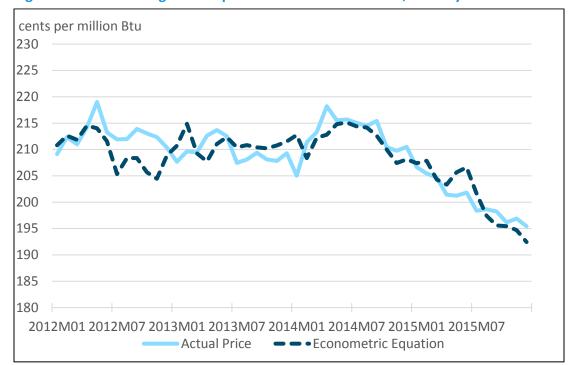



Figure 15. Midwest region coal price forecast versus actual, January 2012 – December 2015

# **C. South Region Coal Prices**

Table 5 provides a comparison of the annual average forecasts and actual South region coal prices for 2012 through 2015. The forecasts for 2014 had the largest difference from actual ranging from 3% (9 cents) for the 3-year index to just over 1% (3 cents) for the econometric forecast. Forecast differences for 2015 were the smallest, with the largest difference (the annual index forecast difference) being 2%. Overall, the econometric forecasts and the annual index forecasts were the closest for all years, with each having average differences of 1% (1 cent) and 2% (4 cents), respectively.

Table 5. Actual and out-of-sample coal price forecasts, annual totals (cents per million Btu)

|                                         | Year   |        |        |        |
|-----------------------------------------|--------|--------|--------|--------|
|                                         | 2012   | 2013   | 2014   | 2015   |
| Actual Price (FCCOAL_SO)                | 272.87 | 264.67 | 260.66 | 249.09 |
| Two-year Index Price (FCCOAL_SO_I2YR)   | 278.57 | 268.70 | 268.35 | 247.59 |
| Three-year Index Price (FCCOAL_SO_I3YR) | 280.11 | 271.88 | 269.61 | 249.62 |
| Annual Index Price (FCCOAL_SO_IANN)     | 275.00 | 268.02 | 267.06 | 244.81 |
| Econometric Equation (FCCOAL_SO)        | 272.56 | 266.92 | 263.40 | 249.09 |

Figures 16 through Figure 19 show the monthly actual and forecasted values for the South region coal price.

Figure 16. South region coal price forecast versus actual, January 2012 – December 2015

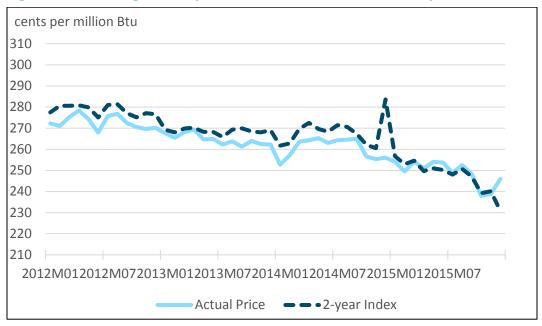
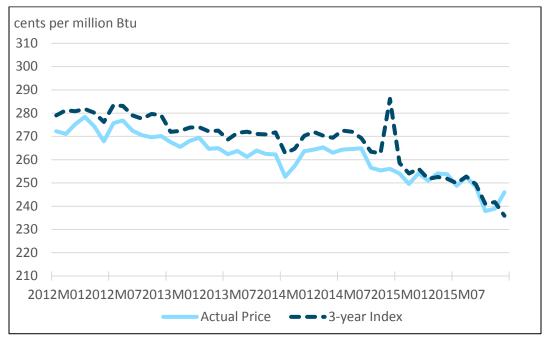
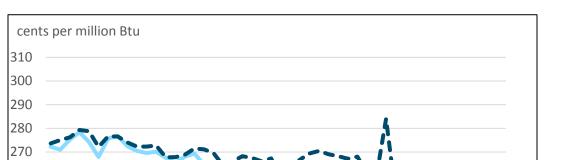





Figure 17. South region coal price forecast versus actual, January 2012 – December 2015





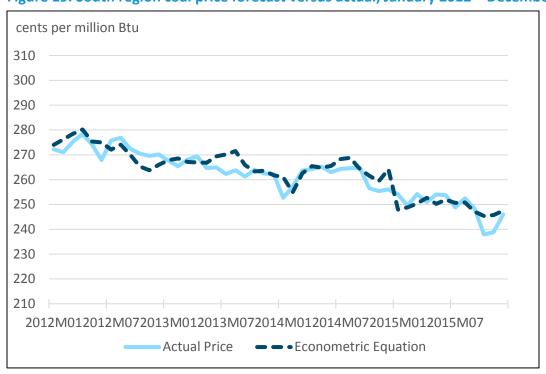

260 - 250 - 240 - 230 - 220 - 210 | -

Figure 18. South region coal price forecast versus actual, January 2012 – December 2015



Actual Price — — • Annual Index

2012M012012M072013M012013M072014M012014M072015M012015M07



#### **D. West Region Coal Prices**

Table 6 provides a comparison of the annual average forecasts and actual West region coal prices for the 2012 through 2015. Excluding the econometric forecast, the forecasts for 2014 had the largest difference from actual ranging from 7% (15 cents) for the annual index to just over 11% (24 cents) for the three-year index forecast. The reason for the large errors is the significant outlier reported in December 2014 for the price of coal delivered to New Mexico. That price, \$16.54/MMBtu, was 575% higher than the 2013 price. When the estimated prices were aggregated up to the regional and national levels, the outlier still caused significant estimated year over year growth, with regional (West) prices being 82% higher and national prices being 7% higher than their respective December 2013 prices. Because the indexes are applied to the national prices, the December 2014 price spike is present (to varying degrees) in the index-based forecasts for all regions. Overall, the econometric forecasts and the annual index forecasts were the closest for all years, with each having average differences of 1% (1 cent) and 5% (9 cents), respectively.

Table 6. Actual and out-of-sample coal price forecasts, annual totals (cents per million Btu)

|                                         | Year   |        |        |        |
|-----------------------------------------|--------|--------|--------|--------|
|                                         | 2012   | 2013   | 2014   | 2015   |
| Actual Price (FCCOAL_WE)                | 187.94 | 194.82 | 212.07 | 191.38 |
| Two-year Index Price (FCCOAL_WE_I2YR)   | 179.95 | 182.20 | 191.16 | 191.14 |
| Three-year Index Price (FCCOAL_WE_I3YR) | 178.60 | 179.44 | 187.99 | 185.68 |
| Annual Index Price (FCCOAL_WE_IANN)     | 183.55 | 184.60 | 196.59 | 198.41 |
| Econometric Equation (FCCOAL_WE)        | 189.66 | 192.32 | 211.90 | 191.56 |

Figure 20 through Figure 23 show the monthly actual and forecasted values for the West region coal price.

Figure 20. West region coal price forecast versus actual, January 2012 – December 2015

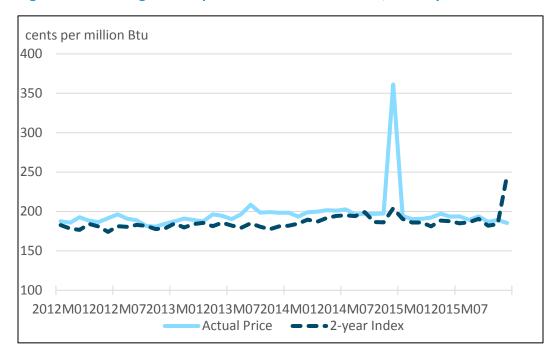
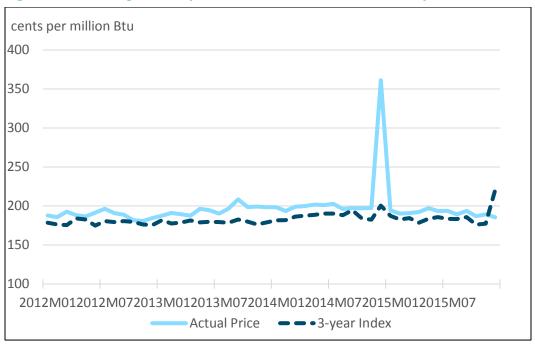




Figure 21. West region coal price forecast versus actual, January 2012 – December 2015



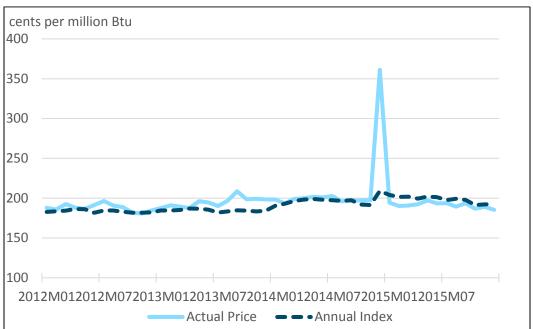
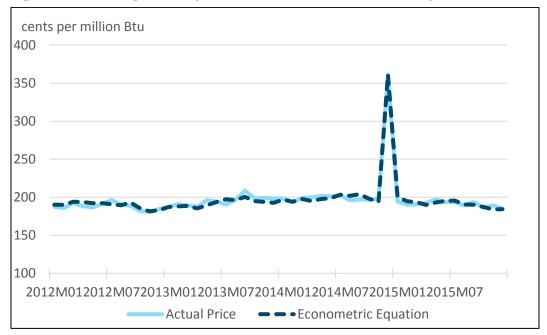




Figure 22. West region coal price forecast versus actual, January 2012 – December 2015





#### E. U.S. Coal Prices

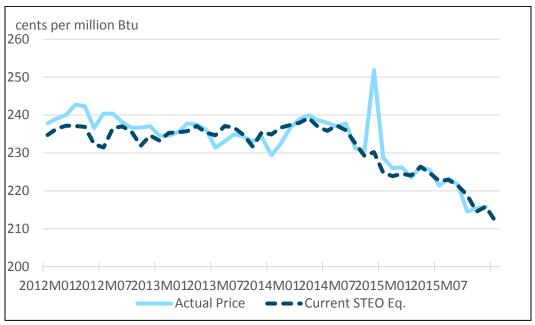

Table 7 provides a comparison of the forecasts and actual United States coal price for 2012 through 2015. The forecasts for 2014 had the largest difference from actual with the current STEO equation being 2% (4 cents) higher and the weighted price forecast 1% (2 cents) higher. On average, the weighted price forecast differences were about one half of the current STEO forecast differences.

Table 7. Actual and out-of-sample coal price forecasts, annual totals (cents per million Btu)

|                                 | Year   |        |        |        |  |
|---------------------------------|--------|--------|--------|--------|--|
|                                 | 2012   | 2013   | 2014   | 2015   |  |
| Actual Price (FCCOAL_US)        | 238.97 | 234.73 | 236.84 | 222.34 |  |
| Current STEO Equation (CLEUDUS) | 235.14 | 235.21 | 235.33 | 222.02 |  |
| Weighted Price (CLEUDUS_R)      | 237.13 | 235.00 | 237.26 | 221.78 |  |

Figures 24 and Figure 25 show the monthly actual and forecasted values for the U.S. coal price.

Figure 24. U.S. coal price forecast versus actual, January 2012 – December 2015



The current STEO Equation did not have a dummy variable for the December 2014 price.

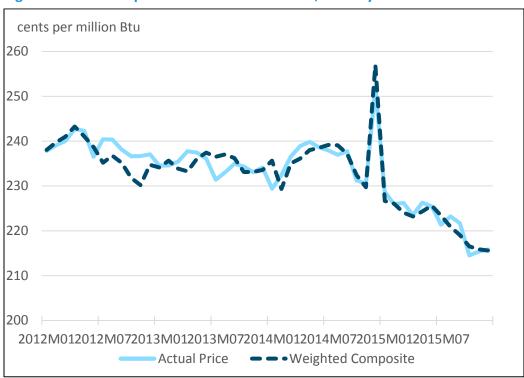



Figure 25. U.S. coal price forecast versus actual, January 2012 – December 2015

# **Appendix A. Variable Definitions, Units, and Sources**

**Table A1. Variable Definitions, Units, and Sources** 

| Variable Name      | Units   | Definition                                     | History | Forecast |
|--------------------|---------|------------------------------------------------|---------|----------|
| APR                | Integer | = 1 if April, 0 otherwise                      | -       | -        |
| AUG                | Integer | = 1 if August, 0 otherwise                     | -       | -        |
| CLEP_CON_MW        | MTD     | Power sector coal consumption, Midwest         | EPM     | STEO     |
| CLEP_CON_NE        | MTD     | Power sector coal consumption, Northeast       | EPM     | STEO     |
| CLEP_CON_SO        | MTD     | Power sector coal consumption, South           | EPM     | STEO     |
| CLEP_CON_WE        | MTD     | Power sector coal consumption, West            | EPM     | STEO     |
| CLEUDUS            | DMMBTU  | Power sector coal price                        | EPM     | Eq.2     |
| CLEUDUS_R          | DMMBTU  | Power sector coal price                        | EPM     | Eq.14    |
| CLEXPUS            | MMTD    | Total coal exports                             | Census  | STEO     |
| CLPRPUS            | MMTD    | Total coal production                          | MSHA    | STEO     |
| CLPS_EP            | MMST    | Power sector coal stocks, United States        | EPM     | STEO     |
| CLPS_EP_MW         | MMST    | Power sector coal stocks, Midwest              | EPM     | STEO     |
| CLPS_EP_NE         | MMST    | Power sector coal stocks, Northeast            | EPM     | STEO     |
| CLPS_EP_SO         | MMST    | Power sector coal stocks, South                | EPM     | STEO     |
| CLPS_EP_US         | MMST    | Power sector coal stocks, United States        | EPM     | STEO     |
| CLPS_EP_WE         | MMST    | Power sector coal stocks, West                 | EPM     | STEO     |
| CLRC_EP_MW_TON     | MMST    | Implied power sector coal receipts, Midwest    | EPM     | Eq.9     |
| CLRC_EP_NE_TON     | MMST    | Implied power sector coal receipts, Northeast  | EPM     | Eq.8     |
| CLRC_EP_SO_TON     | MMST    | Implied power sector coal receipts, South      | EPM     | Eq.10    |
| CLRC_EP_US_TON     | MMST    | Implied power sector coal receipts, U.S.       | EPM     | Eq.12    |
| CLRC EP WE TON     | MMST    | Implied power sector coal receipts, West       | EPM     | Eq.11    |
| CLSPUUS            | DMMBTU  | Coal spot price                                | CNM     | Eq.1     |
| DEC                | Integer | = 1 if December, 0 otherwise                   | -       | -        |
| DSRTUUS            | CPG     | Diesel fuel retail price                       | PMM     | STEO     |
| FCCOAL_INDX_MW     | Index   | Coal price index, Midwest                      | EPM     | Indx.1   |
| FCCOAL_INDX_MW_2YR | Index   | Coal price index, Midwest, 2-yr monthly avg.   | EPM     | Indx.2   |
| FCCOAL_INDX_MW_3YR | Index   | Coal price index, Midwest, 3-yr monthly avg.   | EPM     | Indx.3   |
| FCCOAL_INDX_MW_ANN | Index   | Coal price index, Midwest, annual average      | EPM     | Indx.4   |
| FCCOAL_INDX_NE     | Index   | Coal price index, Northeast                    | EPM     | Indx.1   |
| FCCOAL_INDX_NE_2YR | Index   | Coal price index, Northeast, 2-yr monthly avg. | EPM     | Indx.2   |
| FCCOAL INDX NE 3YR | Index   | Coal price index, Northeast, 3-yr monthly avg. | EPM     | Indx.3   |
| FCCOAL_INDX_NE_ANN | Index   | Coal price index, Northeast, annual average    | EPM     | Indx.4   |
| FCCOAL_INDX_SO     | Index   | Coal price index, South                        | EPM     | Indx.1   |
| FCCOAL_INDX_SO_2YR | Index   | Coal price index, South, 2-yr monthly avg.     | EPM     | Indx.2   |
| FCCOAL INDX SO 3YR | Index   | Coal price index, South, 3-yr monthly avg.     | EPM     | Indx.3   |
| FCCOAL_INDX_SO_ANN | Index   | Coal price index, South, annual average        | EPM     | Indx.4   |
| FCCOAL_INDX_WE     | Index   | Coal price index, West                         | EPM     | Indx.1   |
| FCCOAL_INDX_WE_2YR | Index   | Coal price index, West, 2-yr monthly avg.      | EPM     | Indx.2   |
| FCCOAL_INDX_WE_3YR | Index   | Coal price index, West, 3-yr monthly avg.      | EPM     | Indx.3   |
| FCCOAL_INDX_WE_ANN | Index   | Coal price index, West, annual average         | EPM     | Indx.4   |
| FCCOAL_MW          | CMMBTU  | Power sector coal price, Midwest               | EPM     | Eq.5     |
| FCCOAL_MW_I2YR     | CMMBTU  | Power sector coal price, Midwest               | EPM     | Eq.3     |
| FCCOAL_MW_I3YR     | CMMBTU  | Power sector coal price, Midwest               | EPM     | Eq.3     |
| FCCOAL_WW_ISTR     | CMMBTU  | Power sector coal price, Midwest               | EPM     | Eq.3     |
| FCCOAL_NE          |         | Power sector coal price, Northeast             |         |          |
| FCCOAL_INE         | CMMBTU  | rower sector coar price, Northeast             | EPM     | Eq.4     |

| Variable Name  | Units   | Definition                         | History | Forecast |
|----------------|---------|------------------------------------|---------|----------|
| FCCOAL_NE_I2YR | CMMBTU  | Power sector coal price, Northeast | EPM     | Eq.3     |
| FCCOAL_NE_I3YR | CMMBTU  | Power sector coal price, Northeast | EPM     | Eq.3     |
| FCCOAL_NE_IANN | CMMBTU  | Power sector coal price, Northeast | EPM     | Eq.3     |
| FCCOAL_SO      | CMMBTU  | Power sector coal price, South     | EPM     | Eq.6     |
| FCCOAL_SO_I2YR | CMMBTU  | Power sector coal price, South     | EPM     | Eq.3     |
| FCCOAL_SO_I3YR | CMMBTU  | Power sector coal price, South     | EPM     | Eq.3     |
| FCCOAL_SO_IANN | CMMBTU  | Power sector coal price, South     | EPM     | Eq.3     |
| FCCOAL_US      | CMMBTU  | Power sector coal price            | EPM     | Eq.13    |
| FCCOAL_WE      | CMMBTU  | Power sector coal price, West      | EPM     | Eq.7     |
| FCCOAL_WE_I2YR | CMMBTU  | Power sector coal price, West      | EPM     | Eq.3     |
| FCCOAL_WE_I3YR | CMMBTU  | Power sector coal price, West      | EPM     | Eq.3     |
| FCCOAL_WE_IANN | CMMBTU  | Power sector coal price, West      | EPM     | Eq.3     |
| FEB            | Integer | = 1 if February, 0 otherwise       | -       | -        |
| JAN            | Integer | = 1 if January, 0 otherwise        | -       | -        |
| JUL            | Integer | = 1 if July, 0 otherwise           | -       | -        |
| JUN            | Integer | = 1 if June, 0 otherwise           | -       | -        |
| MAR            | Integer | = 1 if March, 0 otherwise          | -       | -        |
| MAY            | Integer | = 1 if May, 0 otherwise            | -       | -        |
| NGHHUUS        | DMMBTU  | Henry Hub natural gas spot price   | NGM     | STEO     |
| NOV            | Integer | = 1 if November, 0 otherwise       | -       | -        |
| OCT            | Integer | = 1 if October, 0 otherwise        | -       | -        |
| SEP            | Integer | = 1 if September, 0 otherwise      | -       | -        |
| ZSAJQUS        | Integer | Number of days in a month          | -       | -        |

Table A2. Units key

| CPG    | Cents per gallon            |  |  |
|--------|-----------------------------|--|--|
| CMMBTU | Cents per million BTU       |  |  |
| DMMBTU | Dollars per million BTU     |  |  |
| Index  | Index value                 |  |  |
| MMTD   | Million short tons per day  |  |  |
| MTD    | Thousand short tons per day |  |  |

Table A3. Sources key

| Census | U.S. Bureau of the Census                  |
|--------|--------------------------------------------|
| CNM    | EIA Coal News and Markets                  |
| EPM    | EIA Electric Power Monthly                 |
| MSHA   | U.S. Mine Safety and Health Administration |
| NGM    | EIA Natural Gas Monthly                    |
| PMM    | EIA Petroleum Marketing Monthly            |

# **Appendix B. EViews Code and Model Program File**

```
Index-Based Forecasts
'Calculate fuel cost index for each region
·
FOR %reg mw ne so we us
     smpl @all
       genr fccoal_indx_{%reg} = fccoal_{%reg}/fccoal_us
NEXT
'Calculate monthly 2-year moving averages for each region
FOR %reg mw ne so we us
  FOR !m = 1 TO 12
     smpl @all
       genr tempindx=NA
     smpl @all if @month = !m
       genr tempindx = fccoal indx {%reg} *@SEAS(!m)
     smpl 2008:01 @last if @month = !m
       genr fccoal indx {%reg} 2yr = @MSUM(tempindx(-12),13)/@MOBS(tempindx(-12),13)
  NEXT
NEXT
DELETE tempindx
'Calculate monthly 3-year moving averages for each region
FOR %reg mw ne so we us
  FOR !m = 1 TO 12
     smpl @all
       genr tempindx=NA
    smpl @all if @month = !m
       genr tempindx = fccoal_indx_{%reg} *@SEAS(!m)
    smpl 2008:01 @last if @month = !m
       genr fccoal_indx_{%reg}_3yr = @MSUM(tempindx(-12),26)/@MOBS(tempindx(-12),26)
  NEXT
NEXT
DELETE tempindx
'Calculate annual average for each region
FOR %reg mw ne so we us
  FOR !y = 2008 TO 2017
     smpl @all
       genr tempindx=NA
```

```
smpl !Y !Y
        genr tempindx = @mean(fccoal_indx_{%reg})
     smpl 2008:01 @last if @year = !y
        genr fccoal_indx_{%reg}_ann = tempindx
  NEXT
NEXT
DELETE tempindx
FOR %reg mw ne so we us
  FOR !y = 2016 TO 2017
     smpl @all
        genr tempindx=NA
     smpl !Y !Y
        genr tempindx = (fccoal_indx_{%reg}_ann(-12))
     smpl 2008:01 @last if @year = !y
        genr fccoal_indx_{%reg}_ann = tempindx
  NEXT
NEXT
DELETE tempindx
smpl @all
'Create monthly fuel cost forecasts for each region based on indexes
FOR %reg mw ne so we us
  smpl 2008:01 @last
     genr fccoal_{%reg}_i2yr = (fccoal_indx_{%reg}_2yr * cleudus) * 100
     genr fccoal_{%reg}_i3yr = (fccoal_indx_{%reg}_3yr * cleudus) * 100
     genr fccoal_{%reg}_iann = (fccoal_indx_{%reg}_ann * cleudus) * 100
NEXT
Econometric Equation-Based Forecasts
:EQ_FCCOAL_NE
:EQ FCCOAL SO
:EQ_FCCOAL_MW
:EQ_FCCOAL_WE
'****** Create U.S. & Regional Coal Receipts Proxy *****************************
@IDENTITY CLRC_EP_NE_TON = ((CLEPCON_NE / 1000) * ZSAJQUS) - (CLPS_EP_NE(-1) - CLPS_EP_NE)
@IDENTITY CLRC EP MW TON = ((CLEPCON MW / 1000) * ZSAJQUS) - (CLPS EP MW(-1) - CLPS EP MW)
```

# **Appendix C. Regression Results**

# Table C1. CLSPUUS, Coal spot price, regression results

Dependent Variable: CLSPUUS

Method: Least Squares Date: 11/18/14 Time: 11:04 Sample: 2004M01 2014M06 Included observations: 126

| Variable           | Coefficient | Std. Error            | t-Statistic | Prob.     |
|--------------------|-------------|-----------------------|-------------|-----------|
| С                  | -0.394009   | 0.300604              | -1.310721   | 0.1928    |
| CLPRPUS            | 0.681990    | 0.093387              | 7.302819    | 0.0000    |
| CLPS_EP            | -0.004582   | 0.000716              | -6.403328   | 0.0000    |
| CLEXPUS            | 0.970175    | 0.220527              | 4.399349    | 0.0000    |
| D07                | -0.092807   | 0.046903              | -1.978678   | 0.0505    |
| D0801+D0802+D0803  | 0.432199    | 0.081231              | 5.320626    | 0.0000    |
| D0804+D0805+D0806  | 0.986894    | 0.083729              | 11.78678    | 0.0000    |
| D0807+D0808+D0809  | 1.420654    | 0.082681              | 17.18228    | 0.0000    |
| D0810+D0811+D0812  | 1.065134    | 0.087465              | 12.17784    | 0.0000    |
| D09ON              | 0.489861    | 0.059670              | 8.209471    | 0.0000    |
| JAN                | -0.062846   | 0.055272              | -1.137037   | 0.2581    |
| FEB                | -0.059518   | 0.056275              | -1.057631   | 0.2927    |
| MAR                | -0.041654   | 0.055760              | -0.747033   | 0.4567    |
| APR                | -0.006501   | 0.054303              | -0.119722   | 0.9049    |
| MAY                | 0.076177    | 0.054399              | 1.400346    | 0.1644    |
| JUN                | -0.019630   | 0.054603              | -0.359500   | 0.7199    |
| JUL                | -0.035344   | 0.055423              | -0.637715   | 0.5250    |
| AUG                | -0.137050   | 0.057423              | -2.386680   | 0.0188    |
| SEP                | -0.113346   | 0.056812              | -1.995085   | 0.0486    |
| OCT                | 0.027862    | 0.054599              | 0.510301    | 0.6109    |
| NOV                | -0.013449   | 0.055044              | -0.244332   | 0.8075    |
| R-squared          | 0.895742    | Mean depende          | ent var     | 1.475455  |
| Adjusted R-squared | 0.875883    | S.D. dependent var    |             | 0.344700  |
| S.E. of regression | 0.121439    | Akaike info criterion |             | -1.227805 |
| Sum squared resid  | 1.548469    | Schwarz criterion     |             | -0.755091 |
| Log likelihood     | 98.35171    | Hannan-Quinn criter.  |             | -1.035756 |
| F-statistic        | 45.10589    | Durbin-Watson stat    |             | 1.335732  |
| Prob(F-statistic)  | 0.000000    |                       |             |           |
|                    |             |                       |             |           |

# Table C2. CLEUDUS, Electric power sector coal price, regression results

Dependent Variable: CLEUDUS

Method: Least Squares
Date: 03/14/16 Time: 15:52
Sample: 2004M01 2014M06
Included observations: 126

| Variable           | Coefficient | Std. Error            | t-Statistic   | Prob.     |
|--------------------|-------------|-----------------------|---------------|-----------|
| С                  | -0.230292   | 0.090535              | -2.543681     | 0.0124    |
| DSRTUUS            | 0.002165    | 0.000195              | 11.11661      | 0.0000    |
| CLSPUUS            | 0.393036    | 0.054468              | 7.215918      | 0.0000    |
| CLPS_EP            | 0.006558    | 0.000443              | 14.80736      | 0.0000    |
| D08                | -0.519453   | 0.058128              | -8.936429     | 0.0000    |
| D0811              | 0.321703    | 0.137340              | 2.342387      | 0.0210    |
| D0812              | 0.505169    | 0.137526              | 3.673270      | 0.0004    |
| D1001+D1002+D1003  | 0.075378    | 0.075095              | 1.003763      | 0.3178    |
| JAN                | 0.124043    | 0.055210              | 2.246759      | 0.0267    |
| FEB                | 0.136144    | 0.055226              | 2.465209      | 0.0153    |
| MAR                | 0.081240    | 0.055065              | 1.475351      | 0.1431    |
| APR                | 0.021719    | 0.054593              | 0.397841      | 0.6915    |
| MAY                | -0.001211   | 0.054688              | -0.022150     | 0.9824    |
| JUN                | 0.010215    | 0.054586              | 0.187139      | 0.8519    |
| JUL                | 0.050391    | 0.055796              | 0.903131      | 0.3685    |
| AUG                | 0.096429    | 0.055903              | 1.724947      | 0.0874    |
| SEP                | 0.072355    | 0.055853              | 1.295468      | 0.1979    |
| OCT                | 0.012128    | 0.055862              | 0.217111      | 0.8285    |
| NOV                | -0.038612   | 0.057113              | -0.676060     | 0.5005    |
| R-squared          | 0.905674    | Mean dep              | endent var    | 2.020159  |
| Adjusted R-squared | 0.889806    | S.D. dependent var    |               | 0.364757  |
| S.E. of regression | 0.121083    | Akaike info criterion |               | -1.246549 |
| Sum squared resid  | 1.568734    | Schwarz criterion     |               | -0.818855 |
| Log likelihood     | 97.53257    | Hannan-C              | Quinn criter. | -1.072790 |
| F-statistic        | 57.07583    |                       |               | 0.364402  |
| Prob(F-statistic)  | 0.000000    |                       |               |           |

.

# Table C3. FCCOAL\_NE, Electric power sector coal price, Northeast Region, regression results

Dependent Variable: FCCOAL\_NE

Method: Least Squares Date: 08/10/16 Time: 12:35

| Variable           | Coefficient | Std. Error            | t-Statistic | Prob.    |
|--------------------|-------------|-----------------------|-------------|----------|
| С                  | 283.4219    | 11.15901              | 25.39850    | 0.0000   |
| (CLSPUUS*100)      | 0.100774    | 0.037852              | 2.662314    | 0.0095   |
| (NGHHUUS*100)      | -0.056652   | 0.007328              | -7.730311   | 0.0000   |
| DSRTUUS            | -0.003868   | 0.014384              | -0.268893   | 0.7888   |
| CLPS_EP_NE         | -0.829990   | 0.871351              | -0.952532   | 0.3440   |
| D0801+D0802        | -22.43950   | 6.364308              | -3.525835   | 0.0007   |
| D1001+D1002        | 12.61763    | 5.687352              | 2.218543    | 0.0296   |
| D11                | 17.28944    | 2.381289              | 7.260535    | 0.0000   |
| D1204+D1205+D1206  | -22.29267   | 4.816845              | -4.628064   | 0.0000   |
| D1401+D1402+D1403  | 28.28972    | 4.758619              | 5.944943    | 0.0000   |
| D1501+D1502+D1503  | 31.67764    | 5.017913              | 6.312911    | 0.0000   |
| D1512              | -16.00367   | 7.625912              | -2.098591   | 0.0393   |
| D15ON              | -30.64246   | 2.867634              | -10.68563   | 0.0000   |
| D16ON              | -16.08241   | 5.895375              | -2.727970   | 0.0080   |
| JAN                | 1.540467    | 3.748684              | 0.410935    | 0.6823   |
| FEB                | 2.198404    | 3.783920              | 0.580986    | 0.5630   |
| MAR                | -0.999937   | 3.576685              | -0.279571   | 0.7806   |
| APR                | 3.214956    | 3.550674              | 0.905450    | 0.3682   |
| MAY                | 2.647055    | 3.622285              | 0.730769    | 0.4673   |
| JUN                | 3.329410    | 3.634874              | 0.915963    | 0.3627   |
| JUL                | 3.082190    | 3.530392              | 0.873045    | 0.3855   |
| AUG                | -3.574735   | 3.562416              | -1.003458   | 0.3190   |
| SEP                | -4.172274   | 3.530118              | -1.181908   | 0.2411   |
| OCT                | -6.679193   | 3.511647              | -1.902011   | 0.0611   |
| NOV                | -6.207064   | 3.511372              | -1.767703   | 0.0813   |
| R-squared          | 0.886984    | Mean depende          | ent var     | 264.2992 |
| Adjusted R-squared | 0.849828    | S.D. dependent var    |             | 17.29258 |
| S.E. of regression | 6.701233    | Akaike info criterion |             | 6.858156 |
| Sum squared resid  | 3278.177    | Schwarz criterion     |             | 7.517587 |
| Log likelihood     | -311.0497   | Hannan-Quinn criter.  |             | 7.124882 |
| F-statistic        | 23.87184    | Durbin-Watson         | n stat      | 1.840297 |
| Prob(F-statistic)  | 0.000000    |                       |             |          |

# Table C4. FCCOAL\_MW, Electric power sector coal price, Midwest Region, regression results

Dependent Variable: FCCOAL\_MW

Method: Least Squares Date: 08/10/16 Time: 15:57

| Variable           | Coefficient | Std. Error            | t-Statistic | Prob.    |
|--------------------|-------------|-----------------------|-------------|----------|
| С                  | 217.4888    | 5.990697              | 36.30442    | 0.0000   |
| (CLSPUUS*100)      | 0.003448    | 0.021756              | 0.158503    | 0.8745   |
| (NGHHUUS*100)      | -0.061787   | 0.003693              | -16.73008   | 0.0000   |
| DSRTUUS            | 0.129124    | 0.008783              | 14.70193    | 0.0000   |
| CLPS_EP_MW         | -0.593593   | 0.060909              | -9.745606   | 0.0000   |
| D0801+D0802        | -13.54731   | 3.470076              | -3.904037   | 0.0002   |
| D0808              | -12.12977   | 4.816094              | -2.518591   | 0.0138   |
| D15ON              | 1.925577    | 1.457018              | 1.321588    | 0.1901   |
| JAN                | 0.492223    | 2.063157              | 0.238578    | 0.8121   |
| FEB                | 0.527746    | 2.075871              | 0.254229    | 0.8000   |
| MAR                | -2.589581   | 2.099452              | -1.233455   | 0.2211   |
| APR                | -0.588144   | 2.093465              | -0.280943   | 0.7795   |
| MAY                | 3.906242    | 2.106073              | 1.854751    | 0.0674   |
| JUN                | 3.744765    | 2.109913              | 1.774843    | 0.0798   |
| JUL                | -1.552918   | 2.104047              | -0.738062   | 0.4627   |
| AUG                | -3.660051   | 2.188296              | -1.672558   | 0.0984   |
| SEP                | -3.720879   | 2.103724              | -1.768711   | 0.0808   |
| OCT                | -2.813260   | 2.095746              | -1.342366   | 0.1833   |
| NOV                | -1.455503   | 2.085009              | -0.698080   | 0.4872   |
| R-squared          | 0.937252    | Mean depende          | nt var      | 197.9120 |
| Adjusted R-squared | 0.922955    | S.D. dependen         | t var       | 14.98941 |
| S.E. of regression | 4.160598    | Akaike info criterion |             | 5.861430 |
| Sum squared resid  | 1367.535    | Schwarz criterion     |             | 6.362597 |
| Log likelihood     | -268.2101   | Hannan-Quinn          | criter.     | 6.064142 |
| F-statistic        | 65.55611    | Durbin-Watson stat    |             | 0.969978 |
| Prob(F-statistic)  | 0.000000    |                       |             |          |

# Table C5. FCCOAL\_SO, Electric power sector coal price, South Region, regression results

Dependent Variable: FCCOAL\_SO

Method: Least Squares Date: 08/10/16 Time: 16:00

| Variable                | Coefficient | Std. Error            | t-Statistic | Prob.    |
|-------------------------|-------------|-----------------------|-------------|----------|
| С                       | 256.3664    | 7.825193              | 32.76167    | 0.0000   |
| (CLSPUUS*100)           | 0.190490    | 0.025433              | 7.489720    | 0.0000   |
| (NGHHUUS*100)           | -0.056584   | 0.005170              | -10.94419   | 0.0000   |
| DSRTUUS                 | 0.006959    | 0.009580              | 0.726422    | 0.4698   |
| CLPS_EP_SO              | -0.013593   | 0.062878              | -0.216172   | 0.8294   |
| D0801+D0802+D0803+D0804 | -24.61036   | 3.402369              | -7.233301   | 0.0000   |
| D1001+D1002+D1003       | 15.36970    | 3.257135              | 4.718780    | 0.0000   |
| D15ON                   | -19.41569   | 1.831959              | -10.59832   | 0.0000   |
| D16ON                   | -10.82944   | 3.957260              | -2.736601   | 0.0077   |
| JAN                     | 0.911225    | 2.462348              | 0.370063    | 0.7123   |
| FEB                     | 1.843304    | 2.472349              | 0.745568    | 0.4582   |
| MAR                     | 3.485187    | 2.516913              | 1.384707    | 0.1701   |
| APR                     | 4.558920    | 2.476343              | 1.840989    | 0.0694   |
| MAY                     | 3.607940    | 2.480508              | 1.454516    | 0.1498   |
| JUN                     | 4.870245    | 2.468031              | 1.973332    | 0.0520   |
| JUL                     | 5.867953    | 2.459818              | 2.385523    | 0.0195   |
| AUG                     | 6.356804    | 2.491193              | 2.551711    | 0.0127   |
| SEP                     | 2.161688    | 2.480456              | 0.871488    | 0.3862   |
| OCT                     | -1.205761   | 2.445944              | -0.492963   | 0.6234   |
| NOV                     | -1.172447   | 2.427301              | -0.483025   | 0.6304   |
| R-squared               | 0.899684    | Mean depende          | ent var     | 261.8322 |
| Adjusted R-squared      | 0.875248    | S.D. dependent var    |             | 13.71468 |
| S.E. of regression      | 4.844065    | Akaike info criterion |             | 6.173290 |
| Sum squared resid       | 1830.267    | Schwarz criterion     |             | 6.700834 |
| Log likelihood          | -282.4912   | Hannan-Quinn criter.  |             | 6.386671 |
| F-statistic             | 36.81797    | Durbin-Watson stat    |             | 1.184986 |
| Prob(F-statistic)       | 0.000000    |                       |             |          |

# Table C6. FCCOAL\_WE, Electric power sector coal price, West Region, regression results

Dependent Variable: FCCOAL\_WE

Method: Least Squares Date: 08/10/16 Time: 11:57

| Variable                | Coefficient | Std. Error            | t-Statistic | Prob.    |
|-------------------------|-------------|-----------------------|-------------|----------|
| С                       | 228.7986    | 7.283656              | 31.41261    | 0.0000   |
| (CLSPUUS*100)           | -0.179753   | 0.023819              | -7.546748   | 0.0000   |
| (NGHHUUS*100)           | -0.039127   | 0.004510              | -8.676196   | 0.0000   |
| DSRTUUS                 | 0.135686    | 0.010313              | 13.15712    | 0.0000   |
| CLPS_EP_WE              | -2.708311   | 0.256258              | -10.56868   | 0.0000   |
| D0801+D0802+D0803       | -26.78031   | 3.430663              | -7.806161   | 0.0000   |
| D0906+D0907+D0908+D0909 | -11.81356   | 2.968738              | -3.979319   | 0.0002   |
| D10                     | -6.107433   | 1.666392              | -3.665064   | 0.0005   |
| D1412                   | 172.5765    | 5.062156              | 34.09150    | 0.0000   |
| D15ON                   | 11.98188    | 1.834004              | 6.533180    | 0.0000   |
| JAN                     | 4.242636    | 2.393109              | 1.772855    | 0.0802   |
| FEB                     | 2.583631    | 2.388382              | 1.081749    | 0.2827   |
| MAR                     | 3.592422    | 2.466252              | 1.456632    | 0.1493   |
| APR                     | 4.654295    | 2.442577              | 1.905486    | 0.0605   |
| MAY                     | 8.285139    | 2.462555              | 3.364448    | 0.0012   |
| JUN                     | 9.746450    | 2.519859              | 3.867855    | 0.0002   |
| JUL                     | 9.176839    | 2.493220              | 3.680718    | 0.0004   |
| AUG                     | 4.780748    | 2.485824              | 1.923204    | 0.0582   |
| SEP                     | 6.656777    | 2.485049              | 2.678731    | 0.0090   |
| OCT                     | 3.441757    | 2.436914              | 1.412342    | 0.1619   |
| NOV                     | 1.748247    | 2.425941              | 0.720647    | 0.4733   |
| R-squared               | 0.969274    | Mean depende          | ent var     | 182.3725 |
| Adjusted R-squared      | 0.961293    | S.D. dependent var    |             | 23.76750 |
| S.E. of regression      | 4.676013    | Akaike info criterion |             | 6.110178 |
| Sum squared resid       | 1683.613    | Schwarz criterion     |             | 6.664100 |
| Log likelihood          | -278.3987   | Hannan-Quinn criter.  |             | 6.334228 |
| F-statistic             | 121.4518    | Durbin-Watson stat    |             | 1.293801 |
| Prob(F-statistic)       | 0.000000    |                       |             |          |