
  

 1

ASPECTS OF CONSUMERS’ AND FIRMS’ ENERGY DECISION-MAKING: 
A REVIEW AND RECOMMENDATIONS FOR THE 

NATIONAL ENERGY MODELING SYSTEM (NEMS) 
 

Alan H. Sanstad* & James E. McMahon** 
Lawrence Berkeley National Laboratory 

 
April, 2008 

 
1. INTRODUCTION 
 
NEMS projections of residential and commercial energy demand patterns, as well as 
predictions about these sectors’ response to various energy policies, are a complex 
function of model structure, input data, functional form assumptions, and other factors 
and inputs. The specific assumptions regarding households’ and firms’ decision-making 
are one important component. This paper reviews research relevant to certain of these 
assumptions, including studies on demographic influences, the magnitudes and 
interpretations of hurdle rates for energy technology and efficiency investments, 
consumers’ and firms’ expectations regarding such variables as future energy prices, and 
energy price and income elasticities.  We recommend possible applications of these 
findings to further development of the NEMS Residential and Commercial modules. 
 
With the emergence of energy policy as a national priority and numerical energy 
modeling as a key policy tool in the 1970s, the characteristics of economic agents’ 
energy-related decisions, and their appropriate representations in models, became very 
active areas of research, modeling application, and policy analysis. The NEMS 
Residential and Commercial modules are based in part upon results in that body of work, 
including both the underlying structures of the modules and their parameterizations. By 
the 1990s, however, with energy losing prominence as a public policy priority as well as 
an academic research area, the flow of this supporting work focused on U.S. energy 
markets was substantially curtailed. This results in limitations on the availability of more 
recent work that might be readily applied to NEMS. Nevertheless, we find that there are 
some results of this type, as well as work from the 1970s and 1980s that remains relevant 
to NEMS but has not yet been applied.   
 
We also recommend that recent work by EIA on diagnostic techniques for computer 
models and model forecast evaluation be integrated with the evaluation of these findings 
for possible use in NEMS and with any actual applications to the model. Finally, we 
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briefly discuss research frontiers in consumer decision-making that may be relevant for 
long-term model development. 
 
2. RESIDENTIAL SECTOR 
 
The NEMS residential module reflects the modeling philosophy that end-use energy 
consumption is predictable as a function of physical characteristics of housing stocks and 
energy-using equipment and the life-cycle costs of the equipment itself. This approach 
has its roots in detailed engineering analysis of energy systems, and among its other 
advantages it is naturally suited to policy analysis involving technology-focused 
regulations. It is therefore appropriate to highlight themes in the research literature on 
residential energy demand that bear on this approach. 
 
As noted in the Introduction, the first decade of the era of contemporary technology-
focused energy policies, roughly from the mid-1970s to the mid-1980s, saw a great deal 
of both academic and applied program-related research on consumers’ energy-related 
investment decisions. Indeed, much of the knowledge currently available dates to that 
period as a result of interest motivated by the oil price shocks of 1973 and 1979. When 
oil prices declined, U.S. research in this area fell off sharply in the late 1980s and early 
1990s.  Since the late 1990s, research on energy markets, consumer behavior, and related 
topics in other countries has expanded significantly. 
 
Broadly, three methodologies underlie the literature on consumer energy decision-
making: Micro-economic, engineering, and non-economic social scientific, especially 
anthropological and social psychological.1  Of the first, the application of discrete or 
qualitative-choice econometric methods is most important in generating micro-scale 
evidence, in contrast to, for example, large-scale representative-agent computable general 
equilibrium models. The engineering methodology frames both energy investments and 
consumer decisions as phenomena of life-cycle cost minimization.  
 
The third category applies primarily qualitative methods to elicit ethnographic, cultural, 
and psychological aspects of energy use.  Multi-disciplinary social science research on 
energy use emerged fairly rapidly in the 1970s and generated a body of evidence that 
remains relevant; Lutzenhiser (1993) is an authoritative review.  
 
Overall, both the methods and the findings of these various strands of research reveal that 
there is no single generally accepted theory, model, or empirical literature describing how 
individual consumers or residential households make energy-related investment 
decisions. There is, however, evidence of various sorts on this question, which has 
revealed certain regularities even given considerable methodological pluralism.  
 
For the present purpose, most important among these is that engineering-based models, 
such as life-cycle cost, incorporating information only on technologies and costs are 
subject to certain limitations both in empirically accounting for observed behavior and in 
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predicting consumer responses to policies. Several important examples are summarized 
in the following paragraphs. 
 
First, it has long been recognized that technology models omit “hedonic” features of 
energy-using equipment that consumers value and that will therefore affect and possibly 
dominate their purchase decisions.  The capacity to incorporate such features and their 
role in consumer decisions is one important feature of discrete or qualitative choice 
methods (Train 1986).  However, the applications of these methods to household non-
transportation energy demand have typically not included full details of non-engineering 
aspects of energy-using equipment, in our view primarily because of data requirements 
that have proven very difficult to fulfill.2  
  
Second, occupant behavior can significantly influence household energy consumption 
after controlling for the effects of equipment, weather, and other factors. For example, in 
a study of natural gas demand, Sonderegger (1977/78) found that “...unpredictable 
behavior patterns of the occupants introduce a large source of uncertainty in the 
computation of residential space heating energy requirements.” A very recent study, also 
of residential space heating, found that while thermal shell characteristics predicted 
demand well under stable conditions, energy-conservation efforts on the part of 
occupants made such prediction essentially impossible (Emery and Kippenhan 2006).  
 
Third, socio-demographic characteristics have also been found to have significant effects 
on energy demand patterns. In a study using data of the 1993 Residential Energy 
Consumption Survey (RECS), Liao and Chang (2002) found significant differences in 
energy consumption patterns of older consumers.  Tonn and Eisenberg (2007) argue that 
energy affordability among older U.S. consumers will be a major policy issue in the 
future as the number and proportion of these consumers in the population increases and 
upward pressure on energy prices continues. Poyer et al. (1993, 1997), also using the 
RECS from several years, found sizable differences in consumption patterns, as well as in 
price and income elasticities, by household ethnic group.  
 
Finally, life-cycle cost models of energy use require specification of discount rates for 
computing present values of future operating costs, and in an empirical forecasting model 
such as NEMS this entails calibrating these rates to observed purchase behavior, i.e., 
consumers’ own “hurdle rates” or “implicit discount rates.”  The magnitude and 
interpretation of these rates has long been one of the most contentious topics in energy 
policy and modeling, and remains unresolved.  
 
By way of background, virtually from the inception of applied programs – such as utility 
demand-side management – in the 1970s, it was observed that in practice consumers and 
firms frequently chose not to invest in efficiency devices or measures that analysts 

                                                 
2 Although conceptually distinct, the method of hedonic price analysis is related to this issue: Under certain 
assumptions regarding market structure, the contributions to product prices of hedonic features will reflect 
consumers’ valuation of these features. Greening et al. (1997) conducted a hedonic analysis of refrigerator 
prices and the impact of energy efficiency standards thereupon that took account of a number of 
characteristics of refrigerators in addition to their energy consumption. 
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applying engineering-economic criteria estimated ex ante would be cost-effective. This 
stimulated the literature on “barriers” to energy-efficiency.3  Also during this period, 
econometricians and other researchers conducted analyses of actual purchase decisions in 
markets for energy-using equipment, including appliances, heating and cooling systems, 
and automobiles. With observations of choices made when a range of energy-efficiencies 
for a given product were available, knowledge of or additional assumptions regarding 
fuel prices and other factors, and an economic model of the decision, researchers could ex 
post empirically estimate the rates at which consumers traded-off increased purchase 
prices for more efficiency equipment against future savings on operating costs from 
reduced energy use.  These implicit discount rates for energy-efficiency were in many 
instances found to be well in excess of market rates for borrowing or saving. Table 1 
summarizes estimates presented in Train (1985), a widely-cited review of this literature.4  
 

Table 1 – Implicit Discount Rates in Consumer Energy-Efficiency Investments 
 

Study  End-use  Average rate 
Arthur D. Little (1984)  Thermal shell measures  32% 
Cole and Fuller (national survey, 1980) Thermal shell measures  26% 
Goett (1978)  Space heating system and fuel type  36% 
Berkovec, Hausman and Rust (1983)  Space heating system and fuel type  25% 
Hausman (1979)  Room air conditioners  29% 
Cole and Fuller (1980)  Refrigerators  61-108% 
Gately (1980)  Refrigerators  45-300% 
Meier and Whittier (1983)  Refrigerators  34-58% 
Goett (1983)  Cooking and water heating fuel type 36% 
Goett and McFadden (1982)  Water heating fuel type  67% 

 
 
It is worth noting that in subsequent debate regarding consumer energy-related decision-
making, continuing to the present day, the ex ante engineering “potential” and ex post 
economic results tend to be conflated, and both invoked as evidence of the so-called 
energy efficiency “gap,” the apparent systematic underinvestment in efficient equipment 
by consumers.  These two sources of evidence are, however, quite different, insofar as 
evidence on implicit discount rates obtained by econometricians using discrete-choice 
methods does not rely on engineering judgments and other assumptions that underlie 
potential studies.  In addition, by virtue of both methodology and the type of data 
involved, the econometric estimates are either not affected by, or take account of, such 
factors as the “rebound” effect, the offsetting increase in energy service demand resulting 
from a decline in the service cost as a result of incremental energy-efficiency.5 
 

                                                 
3 The original work on this subject was Blumstein et al. (1980); this paper referred to “social and 
institutional barriers.”  The now more-familiar term “market barriers” arose later. 
4 It is pertinent that the research reviewed by Train had been conducted by the early 1980s, and much of it 
appeared in the 1970s; that is, the “stylized facts” about implicit discount rates are now two-to-three 
decades old. 
5 One aim of the micro-econometric studies was to jointly analyze equipment purchase and fuel utilization  
decisions, for example Hausman (1978) and Dubin and McFadden (1984). 
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Efforts to explain anomalously high implicit discount rates for energy efficiency have 
generated a very large literature over several decades without resolving the issue. It is not 
generally recognized, however, that a close relationship between hurdle rates and 
household was detected in a number of the early studies. This is illustrated in Table 2, in 
which further results of three of the studies discussed by Train are presented. As the 
results indicate, there is a pronounced inverse relationship between household income 
and implicit discount rates, and moreover, the rates observed among the higher income 
brackets are within ranges that are consistent with commercially-available consumer 
discount rates for borrowing.   
 

Table 2 – Implicit Discount Rates for Selected End-uses by Household Income 
 

Study End-use Household  
income 

Implicit discount rate 

Arthur D. Little 
(1984) 

Thermal shell 
investments 

< $5,000 
$5,000-6,999 

$12,000-14,999 
$25,000-29,999 
$40,000-49,999 

> $50,000 

88% 
79% 
53% 
27% 
9% 

0.4% 
Berkovec et al. 
(1983) 

Space heating system 
and fuel type 

$1,000 
$5,000 

$10,000 
$25,000 
$40,000 
$60,000 

56% 
46% 
38% 
25% 
19% 
14% 

Hausman 
(1979) 

Room air conditioners $6,000 
$10,000 
$15,000 
$25,000 
$35,000 
$50,000 

89% 
39% 
27% 
17% 
8.9% 
5.1% 

 
 
This relationship was robust among studies that included income in analyzing energy 
technology and efficiency purchase decisions. Several explanations have been suggested 
but neither confirmed nor falsified: Limited access to credit among lower income 
households is one hypothesis; a correlation between lower income and lower educational 
levels that impedes these households from fully assessing costs and benefits is another. 
The latter conjecture can be viewed as a variation on the hypothesis that underinvestment 
in energy efficiency is due to consumers lacking appropriate information, which was 
possibly the earliest hypothesis regarding this phenomenon. However, it was also found 
rather early on in research and programmatic experience that information on energy 
efficiency, per se, has relatively little effect on consumers’ investment decisions.6  More 
generally, the correct explanation of high implicit discount rates remains to be 
determined.  We return to this issue in subsequent sections. 
 

                                                 
6 Early work is summarized in Stern and Aronson (1984); Sanstad (2007) discusses the limited energy 
savings from utility information-only efficiency programs. 
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Consumer expectations 
All models of energy demand that incorporate some dynamic or intertemporal 
representation, whether theoretical or empirical, must make an assumption regarding 
economic agents’ expectations of future conditions, including energy prices. In 
theoretical models such as those based on optimal control principles and in some 
computable general equilibrium models, perfect foresight is assumed.  In empirical 
(econometric) models as well as numerical simulation models, “myopic” expectations are 
commonly assumed: Consumers are assumed to expect that future values, for example of 
energy prices, will be the same as current values. A variation on the latter formulation is 
to assume that future prices change at a fixed rate.  
 
Implicit discount rate estimates of the type discussed reported, for example, depend upon 
such assumptions. In the results reported by Train (op cit.), myopic expectations were 
assumed. It is worth noting that these estimates do not imply any particular expectations-
formation processes on the part of consumers.  
 
A panel of the National Academy (Stern 1984) described the use of the “adaptive 
expectations” model in early energy demand studies, which combines aspects of the 
perfect and myopic foresight assumptions: In this model, consumers predict one-period-
ahead energy prices based on a weighted combination of the current and previous period 
prices. (In some variations, a longer “history” of prices is incorporated.) It noted that 
while the adaptive expectations model had performed well in empirical studies, the 
technical details of its application did not allow for the distinction among several 
theoretical models that implied the same coefficients in a standard econometric model.  
 
Despite its presumed importance, we have identified very little more recent research 
focused directly on how households forecast or form expectations of future energy prices 
or other variables that affect demand, or that incorporate other assumptions than those 
just described.  Cowing and McFadden (1984) note that both of the two numerical 
models of residential energy demand that they analyzed assume myopic expectations, 
which they characterize as both inconsistent within the framework of the models and 
“...likely to be a very inaccurate specification.” 
 
Kamerschen and Porter (2004) estimated several models of U.S. residential electricity 
demand incorporating a form of adaptive expectations for fuel prices: Consumers are 
assumed to form expectations according to a first-order moving average process. They 
did not, however, report the effects of this assumption compared to, for example, myopic 
expectations.  
 
The fundamental challenge in analyzing consumer expectations related to energy in a 
quantitative form that could be incorporated into energy models is that expectations are 
not observable or measurable in the way that variables such as demands or market prices 
are. Kaufmann (1994) constructs a proxy for consumer price expectations using the 
difference between oil price changes and a real interest rate, where oil prices are also a 
proxy for the prices of other fuels. He finds that expectations defined in this way have, as 
would be expected, a significant effect on the impact of a hypothetical carbon tax. This 
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result highlights the dilemma that consumer expectations are both important for energy 
modeling and very difficult to model empirically in a robust manner. 
 
3. COMMERCIAL SECTOR 
 
There has been much less applied research on commercial firms’ energy decision-making 
than on residential consumers. In part, this reflects both the greater difficulty, from a 
research perspective, of gaining access to firms, and the fact that the methods of the 
social science disciplines that were applied to energy studies in the 1970s and 1980s did 
not lend themselves easily to analyzing commercial firms.  There has been some work, 
however, on the specific question of investment and non-investment in energy efficiency 
analogous to the corresponding question for households – the energy efficiency “gap” - 
although in the case of commercial enterprises there is not an equally rich body of 
evidence on quantitatively measured (ex post) implicit discount rates.  
 
DeCanio (1993, 1998) provided a theoretical rationale for the systematic under-
investment in cost effective energy-efficiency in private firms, emphasizing principal-
agent effects within firms affecting, for example, the allocation and evaluation of capital 
budget resources separate from decisions about operating budgets, as well as “bounded 
rationality” on the part of managers. Certain of these theoretical findings are supported by 
the observations of Ross (1986), which, although focused on industrial firms, may also be 
relevant to large commercial companies: In multi-layered management hierarchies, the 
application internal criteria for investment evaluation with the aim of capital rationing 
can appear as “high” hurdle rates for efficiency investments. On the other hand, as 
Anderson and Newell (2003) point out, such decision-making may affect all types of 
investments, and does not necessarily provide evidence of a particular bias against or 
systematic under-weighting of energy efficiency opportunities. 
 
Payne (2006) illustrated the differences in how energy consumption information (from 
the utility bill) is handled in different commercial enterprises.  He notes that businesses 
can encompass one or many buildings, and that the organizational structure varies 
depending upon the size of the business.  A small business may have one decision-maker, 
while large businesses may assign different responsibilities to various employees, 
including accountants to pay the energy bills, and facility managers to make 
recommendations to management about purchasing energy-using equipment.  
Information is processed differently in different organizations, and often not 
communicated well among different parties. 
 
High hurdle rates across firms in the NEMS Commercial module are interpreted as “risk 
premia” of varying magnitudes. It is therefore of interest to summarize several models of 
decision-making under uncertainty that have been posited to account for these hurdle 
rates. Sutherland (1991) argued that high hurdle rates could be “rationalized” by the 
theory of decision-making under uncertainty, specifically the Capital Asset Pricing 
Model (CAPM).  However, as Metcalf (1994) pointed out, the relationship between 
returns to energy efficiency and returns to other investments implies, in the logic of 
portfolio theory, that “risk premia” for efficiency investments should be negative; 
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intuitively, investments in energy efficiency will tend to yield positive returns under 
conditions in which other investments do not.  Thus, the correct application of the CAPM 
would serve only to heighten the anomaly. Responding to the need for an economic 
explanation of high efficiency hurdle rates, Metcalf (op cit), and Metcalf and Rosenthal 
(1995) instead applied the theory of option values, which predicts a “wedge” between 
investors’ underlying discount rates and their hurdle rates for investments with uncertain 
returns and applies in principle to private firms as well as to individuals. As Sanstad et al. 
(1995) demonstrated, however, the actual predictions of this model when applied to 
energy-efficiency investments fall far short of accounting for hurdle rates of the 
magnitudes reported in the literature.7  To date, standard microeconomic models of 
investment under uncertainty have failed to account for the implicit discount rate 
evidence of both individuals and commercial firms.  
 
Other studies have examined companies’ hurdle rates and forecast horizons more 
generally. Poterba and Summers (1995) presented evidence that U. S. firms set an 
average hurdle rate of 12.2% (in constant dollar terms) in capital budgeting calculations, 
which as they point out is higher than both equity holders’ average rates of return and the 
return on debt during the past fifty years. They also note an absence of correlation 
between real hurdle rates and financial variables representing risk. While they 
hypothesized that some managers may set high hurdle rates as a “screening device” for 
overly optimistic individual project cash flow projections, their survey data did not allow 
for investigation of this or other possible behavioral explanations of the phenomenon.  
 
4. CROSS-CUTTING ISSUES 
 
The problem of high implicit discount rates for energy investments on the part of both 
households and firms has been one source of a literature on characteristics of markets for 
energy efficiency and the appropriateness of policies to promote efficient technology 
adoption. Among other topics, this literature has addressed whether high hurdle rates 
reflect market failures for energy efficiency or anomalies in consumers’ actual decision 
processes.  
 
Sutherland (op cit.) distinguished between market “barriers” to efficiency, as these were 
described in the engineering literature, and market “failures” as defined in 
microeconomics:  Misallocations in competitive equilibrium due to non-rivalry and/or 
non-excludability (“public goods” and “externalities”).  Sutherland argued that only 
“failures,” not “barriers,” provided a justification for policy interventions, that the former 
was a much smaller set of factors than the latter. This distinction between market 
“barriers” and “failures” related to energy efficiency was elaborated upon by Jaffe and 
Stavins (1994), who emphasized informational problems as key factors in the intersection 

                                                 
7 This is also granting the ceteris paribus aspects of the option value model in this application: Many if not 
most purchases of appliances and other energy-using durables are for replacement of failed equipment, and 
thus involve minimizing consumers’ time without the energy service in question and do not have the 
discretionary nature assumed by the option value model. 
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of the two categories.8 Narrowly, since information on energy efficiency is a public good, 
its predicted under-provision by the market may be reflected in consumers’ purchase 
decisions. More broadly, asymmetric information on energy efficiency – for example 
between owners and occupiers of rental housing or manufacturers and purchasers of 
efficient appliances – might similarly result in efficiency under-investment.   
 
The public good character of information provides a rationale for such measures as 
appliance energy labeling and information-based utility programs. However, as noted 
above, a consistent and robust finding from both research and programmatic experience 
is that providing information, per se, has little effect on consumers’ efficiency 
investments.9  But consumers and firms are not the only actors in markets for energy 
efficiency; manufacturers, builders, property owners, contractors, retailers, energy 
companies and government agencies influence decisions regarding energy-using 
equipment.  Table 3 illustrates the categories of decision-makers that help determine 
information flows, transaction costs, and, ultimately, purchase decisions.  
 
The interactions among different actors and/or market segments not only complement, 
but are likely to partially determine, the decision rules that individual agents use in 
making energy choices. Asymmetric information between owners and occupiers of rental 
housing is an example.  More generally, consumers’ choice sets, or perceived range of 
available technology options, are over time determined in part by the interplay among 
consumer preferences, manufacturers’ production capabilities and costs, government 
regulation, and other factors. Beldock (1988) determined that there were a range of 
factors that influenced manufacturers to offer more energy efficient products, and  
anecdotal evidence indicates that information may influence product offerings, as 
manufacturers prefer avoiding being identified with the least efficient product. Fischer 
(2005) analyzed the relationship between market structure and the effects of energy 
efficiency standards. 
 
The dynamics of these interactions also influence the rate at which technical innovation 
related to energy becomes embodied in equipment; for example, how quickly basic 
engineering research is transmitted to the marketplace in the form of commercially-
available products. Asymmetric information may be an important element of these 
interactions, but there has been almost no empirical research to gauge its magnitude. A 
notable exception is Brechling and Smith (1994), who found an “occupancy” effect on 
efficiency investments in an econometric study focused on housing in the United 
Kingdom.   

                                                 
8 The general topic of market failures and energy efficiency is also discussed by Koomey (1990), Sanstad 
and Howarth (1994b), and Sanstad et al. (2006). 
9 Stern and Aronson (op cit.). 
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Table 3.  Decision-makers and actions in markets for energy efficiency 
 
Actor Actions Examples 
Manufacturers Determine products to offer and 

influence equipment prices and 
operating characteristics 

Size/capacity, range of efficiencies, standby 
power 

Builders Select initial equipment in new building Heating and cooling systems, water heating, 
lighting 

Property owners May pay operating expenses; specify 
replacement equipment 

Most end uses 

Contractors As intermediaries, select replacement 
equipment 

Residential HVAC, water heating 

Retailers Influence product offerings and 
equipment prices 

Appliances 

Occupants Exhibit usage behavior; pay operating 
expenses 

Thermostat settings, leaving lights on 

Energy 
companies 

Influence energy prices; may offer 
incentives toward purchase of efficient 
equipment 

Utility energy efficiency programs 

Government 
agencies 

May provide information, incentives Labels, building codes, energy performance 
standards, tax credits to manufacturers and 
to consumers 

 
 
5. REMARKS ON “PERFECT FORESIGHT” IN ENERGY MODELING 
 
We have briefly discussed the topic of consumer foresight related to energy, and 
mentioned perfect foresight in intertemporal optimization models, in which an objective 
function such as discounted utility or cost is maximized or minimized implicitly subject 
to complete knowledge of all relevant future conditions. There are several reasons that 
this formulation is used despite a lack of supporting empirical evidence. One reason is 
that some models structured this way are explicitly normative and designed to identify 
optimal intertemporal allocations rather than realistically represent actual behavior. 
Others, however, implicitly or explicitly treat perfect foresight as a behavioral 
assumption. This, in turn, has roots in part in the theory of “rational expectations.”  
 
However, the theory of rational expectations does not assert that economic agents 
perfectly predict the future, as is assumed in deterministic perfect foresight models. On 
the contrary, it posits that their errors, or mis-forecasts, will not differ systematically from 
actual market outcomes. The stochastic foundations of this idea are fundamental, and 
passage to a deterministic simplification is not straightforward. The underlying empirical 
rationale for the hypothesis appeals to repetition of particular types of choices, and 
stability of the choice environment; colloquially, one can imagine economic agents in 
“repeated trials” of a given optimization problem involving some random variable, all 
other factors held constant. The idea of rational expectations is informally that agents 
will, with experience, not repeatedly err in one direction. To the extent that reducing such 
an environment to a non-stochastic reduced form is plausible at all, such simplification 
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requires some “steady state” assumption. By contrast, for households and many if not 
most commercial firms, energy-related investments tend to be infrequent, underlying 
circumstances dynamic, and opportunities for learning limited.  
 
In addition, the power of the rational expectations hypothesis comes in its application to 
market phenomena, and particularly in the further hypothesis that markets transmit all 
available, relevant information (i.e., relevant to whatever choices are the object of 
analysis).  In modeling terms, whether numerical or theoretical, one can again question 
whether this is an accurate reflection of energy markets. At least two deviations suggest 
themselves: “Efficient markets” will generally be among other things perfectly 
competitive, and if not actually stable with respect to exogenous factors then at least quite 
dynamic in processing information on changing conditions. In our view, consumer 
markets for energy and energy technology satisfy neither condition. 
 
We also note that incorporating perfect foresight in the form of rational expectations in 
energy models requires that key long-term variables be represented accurately, 
particularly with respect to their stochastic properties.  So long as long-term energy prices 
are treated as smooth trends, decisions will fail to account for the actual variability and 
uncertainty observed in price fluctuations.  Short-term price spikes may have a 
disproportionately high impact on decisions about energy efficiency and energy-using 
behaviors.  Spikes in world oil prices in 1973-1974 and 1979 were a significant driver of 
long-term changes in technology choice still felt today, even though oil prices declined in 
1986.  The California “energy crisis” of 2001 resulted in some dramatic changes, 
including an increase in the share of compact fluorescent lamps sold from 1% to 8% in 
one year, and a more than 20% decrease in electricity consumption by more than 35% of 
households, such that residential electricity consumption declined about 8% in one year.  
 
We see these considerations as having several implications for NEMS given its focus on 
forecasting and estimation of actual market responses to policies. Any consideration of 
including perfect foresight systematically should be conditional on re-designing the 
model to fully incorporate uncertainty, which in turn would entail substantial trade-offs in 
resolution, tractability, and accessibility. In addition, as in the previous quote of Cowing 
and McFadden (1984), perfect foresight on the part of consumers or firms would if 
correctly implemented need to be fully integrated with the equilibrium structure and 
solution methods of the model.  
 
6. RECOMMENDATIONS 
 
Model diagnostics and forecast evaluation 
The findings we have surveyed suggest a number of potential enhancements to the 
NEMS Residential and Commercial modules. However, given the complexity of the 
model and the constraints upon resources available for its enhancement and development, 
it is important to consider how specific changes might be ranked according to their 
potential contributions to improving NEMS. 
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Such a ranking is not possible without a framework for both defining and measuring 
“improvement.” Ultimately, the specification of decision making by consumers and firms 
in NEMS as well as any changes thereto should be driven by the purposes to which the 
Residential and Commercial modules are applied. As stated in the model documentation 
(USEIA 2007a, 2007b), these purposes are three-fold: Forecasts of energy demand, 
analysis of potential policies, and interaction with other components of NEMS. As we 
understand it, EIA’s recent work on developing methods for NEMS forecast evaluation 
and for statistical model diagnostics is aimed at developing formal, quantitative criteria 
for assessing the performance of these and other modules with respect to these functions 
(Buck and Lady, 2005; Lady 2006, 2007). We believe that these tools will provide a 
means of creating criteria for gauging the costs and benefits of new efforts to change, 
enhance, or expand model structure, data inputs, algorithms, or other features, including 
those having to do with decision-making by households and firms. Specifically, they can 
be used among other purposes for comparing ex ante the possible effects on model 
outputs and performance of improving estimates of different model parameters or inputs, 
and allocating resources accordingly.  Put simply, parameters whose variation has little 
effect on model results may not warrant resources for more careful measurement. 
 
In contrast to, for example, macroeconomic forecasting, in which forecast horizons are 
typically several calendar year quarters, full model forecast evaluation for long-run 
models such as NEMS – i.e., those with multi-decadal time horizons – poses the simple 
problem of being strictly speaking impossible until history has run its course over these 
time periods. This highlights the importance of making the fullest possible use of long-
run historical information in assessing the model’s full-horizon projections. Here we 
recommend expanding upon, to the extent possible given data limitations, EIA’s existing 
practice of reporting in graphical form in the Annual Energy Outlook series the 
relationships between historical trends and model projections.  We recommend 
quantitative comparisons of joint historical trends in major variables with their 
counterparts in the projections and identifying the reasons both for key departures of the 
latter from the former and for continuity of trends that might otherwise be expected to 
shift in the future, depending on the variables in question. This differs from the current 
forecast evaluation work in that it does not compare model predictions with actual events; 
it might more accurately be called forecast “credibility” analysis. We emphasize the need 
to conduct this type of analysis for important variables jointly rather than, or in addition 
to, singly, because it is of course often the case in energy markets, even the norm, that a 
confluence of influences determine major outcomes, for example the interactions among 
fuel prices, technology characteristics, energy policies, and end-use demand patterns. An 
example is provided in a study of Stanford University’s Energy Modeling Forum, in 
which a quantitative decomposition of factors determining energy intensity trends was 
performed on a suite of numerical models (EMF 1996). Because data limitations would 
preclude conducting this type of analysis at the full level of disaggregation embodied in 
NEMS, we suggest that it be carried out at the level of aggregation needed to take 
advantage of EIA and other time series data.   
 
We also believe that EIA’s current forecast evaluation and model diagnosis work could 
be extended to improve parameter setting and calibrations involved in assigning values to 
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hurdle rates and market shares for energy technology investments in the residential sector 
as well as to price and other elasticities in both modules.  In the case of hurdle rates, the 
current method for assigning their values in several end-uses in the model combines 
existing information data both on these specific variables and others, functional form 
assumptions, and modelers’ judgment. This is motivated in part by both data availability 
issues and the fact that the complexity of the model tends to preclude the use of 
conventional estimation techniques in any case.  A combination of the diagnostic and 
evaluation methods with new data sources could result in more transparent and possibly 
improved methods for assigning these parameters. In the case of elasticities, it is not clear 
to us from the documentation how exogenous estimates from the literature are mapped 
into NEMS, but here again new data sources (summarized below) in conjunction with 
these same methods and the endogenous elasticity estimation framework discussed by 
Wade (2003) could yield improvements.  
 
Demographic disaggregation 
As we have discussed, there is ample evidence of heterogeneity in household energy 
demand-related behavior with respect to variation in socio-demographic characteristics. 
We recommend that the implications of unrepresented socio-demographic heterogeneity 
for both forecast accuracy and policy response in the Residential module be investigated, 
and that, if warranted by the results, approaches to incorporating key socio-demographic 
variables be explored. At a minimum, we recommend that the relationship between 
household income and hurdle rates for energy technology and efficiency investments 
with respect to their effects on Residential module outputs be investigated, per the next 
topic. 
 
Hurdle rates 
We recommend that priority be given to updating the input data on hurdle rates in both 
the Residential and Commercial modules. We think it likely that more recent data could 
be identified that would reflect shifts in markets and behavior since the estimates in the 
various sources currently used for NEMS inputs. Moreover, we believe that new data 
sources could be better targeted to the particular functional forms and decision 
assumptions in the modules.  For example, regarding the use of hurdle rates inferred from 
parameters in multinomial choice models that are one source for the Residential module, 
Johnson et al. (1994) note that “These discount [hurdle] rates are provided mainly as an 
intuitive interpretation of the logit parameters and should be used with caution if 
transferred to other consumer choice models, such as life-cycle cost minimization 
models.”10 We recommend that data updating be conducted in conjunction with further 
analysis of the calibration methods currently employed in the Residential module for 
setting discount or hurdle rates and related parameters and experimentation with possible 
alternatives that might allow for greater flexibility and accuracy in representing observed 
market outcomes and responses to policies. Among other considerations, as discussed in 
preceding sections, there is a documented, first-order effect of household income on 
hurdle rates that should be accounted for. It is possible that in the case of space 
conditioning this effect is partially accounted for in the disaggregation and calibration by 

                                                 
10 Johnson et al, op cit., p. 33. 
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U.S. Census housing data (Cymbalsky 2008), but this is a question that should be 
addressed empirically.  
 
With regard to discount rates in the Commercial module, in addition to the desirability of 
more recent data, we noted previously that observed hurdle or discount rates of 
commercial firms in excess of risk-free borrowing rates – for energy technology 
investments and more generally – cannot necessarily be interpreted as risk premia.  The 
implications of this distinction for Commercial module outputs may be important, and 
should be the object of further analysis. 
 
Elasticities 
The sources of various elasticities in the Residential module are not clear to us from the 
documentation (USEIA 2007b). In the case of the Commercial module, as we noted in 
the Introduction, the vintage of elasticity assumption reflects in part the significant 
slowdown in energy demand research of the past two decades.  We have identified 
several studies that we recommend be evaluated by EIA for possible use; these provide 
more recent estimates than those surveyed by Dahl (1993).11 
 
Poyer and Williams (1993) estimated short and long run price and income elasticities of 
electricity and total energy consumption by household group: Black, Hispanic, or 
“Majority.” Espey and Espey (2004) conducted a meta-analysis of price and income 
elasticities regarding U.S. residential electricity demand, drawing on 36 studies published 
between 1971 and 2000 covering observations during the period 1947 to 1997.  
Kamerschen and Porter (op cit.) estimated both flow-adjustment and simultaneous 
equation models for residential electricity demand (as well as models for industrial and 
total demand), and reported price and income elasticities. Reiss and White (2005) 
estimate price elasticities of electricity demand for a sample of California households; 
their findings include substantial heterogeneity in household responses to price changes. 
 
Mansur et al. (2008) estimated a national multinomial discrete-continuous econometric 
model of U.S. households’ and firms’ energy demand representing fuel choice and 
conditional fuel use. Their results include price elasticities including the potential effects 
of climate change. Denton et al. (2000) estimated a model of energy demand in the U.S. 
commercial sector, incorporating among other factors declining rate schedules as well as 
building characteristics, and yielding price elasticity estimates for electricity and natural 
gas. 
 
Several other studies are of interest although they do not estimate elasticities.  Long 
(1993) analyzed U.S. residential expenditures on energy conservation investments and 
renewable energy, and found household income as well as energy prices and climate 
conditions to be important factors. Scott et al. (2007) presented results of a detailed 
model of potential energy impacts of climate change on energy use by U.S. residential 
and commercial buildings, and the potential mitigating effects of energy efficiency 
programs.  
                                                 
11 In addition to the studies we cite here, Madlener (1996) is an interesting methodological survey that also 
reviews work in other countries. 
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Future directions 
Our discussion and recommendations have been directed toward potential improvements 
to the NEMS Residential and Commercial modules in essentially their current forms. In 
the long run, however, we anticipate that fundamental changes to the model’s structure –
including choice assumptions and algorithms – will be considered by EIA. In this event, 
research on decision-making that is currently at the frontiers of economics may have 
advanced to the point of applicability to numerical models. We conclude this paper with a 
discussion of key points. 
 
We have noted that anomalously-high hurdle rates for energy-efficiency investments 
remain essentially unexplained.  As argued in Sanstad (2005) and Sanstad et al. (op cit, 
2006), it is clear that this is in the first instance a methodological issue. The puzzle arises 
from the “as if” character of both discrete-choice utility maximization models and 
engineering economic life-cycle cost models: Both provide an interpretation for 
describing outcomes, but not the processes, of consumers’ investment decisions. If 
consumers are employing neither discounted cash-flow calculations nor decision rules 
based on marginal trade-offs between first costs and future returns, then there are in fact 
no “discount rates” to be interpreted, and the empirical pattern is an artifact.12 
 
Emerging models and evidence within what is often referred to as “behavioral 
economics” theoretically describe and empirically document deviations from the 
assumptions and predictions of neoclassical theories of individual behavior.13 In certain 
cases, there is qualitative consistency between such findings and evidence on consumer 
energy-related investments. One example is that of “non-compensatory” decision-
making. The hallmark of standard microeconomics is that of trade-offs and indifference 
at the margin; this is the assumption underlying substitution elasticities. Alternative 
models have been proposed in which decision-makers instead apply some form of 
sequential procedure in complex choice situations. Such behavior can be described in the 
simplest form by lexicographic preferences; Tversky’s “Elimination-By-Aspects” model 
is a probabilistic generalization (Tversky 1972).14 This class of model would appear to 
capture underlying features of consumer energy choice that are widely if informally 
recognized but that have to-date not been modeled quantitatively. For example, given a 
choice among different models of an appliance – say, refrigerator - that has a range of 
features including price and energy efficiency, a consumer might first narrow her choice 
set to all those within a certain volume or size range, or door configuration. Within that 
set, all models above (or below) a certain price might be excluded, and thence such 
features as color, ice-making features, and energy efficiency. Such behavioral models 

                                                 
12 An important example is the use of the payback heuristic. Under appropriate assumptions, the decision 
criterion of “short” payback times can be shown to be observationally equivalent to the life-cycle cost 
model with a suitably “high” discount rate – that is, on the basis of observed behavior alone, ceteris 
paribus, these two behavioral rules cannot be distinguished. Their implications for understanding consumer 
choice and policies intended to affect it, however, are quite different. 
13 Sanstad and Howarth (1994a) discuss the hypothesis that “bounded rationality” may be a factor 
underlying high implicit discount rates. 
14 Tversky proposed his model as a means of addressing the so-called “independence of irrelevant 
alternatives” problem in models of utility. 
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might substantially enhance both predictive accuracy and the representation of market 
responses to policies.  
 
Another class of examples pertains to intertemporal decision-making. This is one of the 
most active areas of behavioral economics, having amassed robust evidence regarding 
deviations from discounted utility theory, as well as theoretical models – drawing on 
cognitive psychology, among other sources – to account for observed behavior (Frederick 
et al. 2002). One example is an intertemporal model incorporating the concept of “loss 
aversion,” the asymmetric weighting of gains and losses from an initial reference point, 
which was introduced by Kahneman and Tversky in their so-called “prospect theory” 
(Kahneman and Tversky 1979).  Loewenstein and Prelec (1992) suggest that the energy-
efficiency investment problem and the finding of high hurdle rates are consistent with the 
predictions of a loss aversion model, with initial investments being given asymmetrically 
greater weight than future savings.  
 
Research of this kind has accelerated very rapidly in recent years, across a variety of 
specific market and choice applications, and there is every reason to expect that this will 
continue. The current state-of-the-art does not provide the types of results – including 
econometric or statistical – that can be robustly applied to quantitative energy modeling, 
and such results are not likely to be forthcoming without an investment of resources 
aimed specifically at energy applications. We recommend that such an investment be 
considered as national energy modeling evolves towards a new generation of models and 
methods. 
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