Environment

Note 1. Emissions of Carbon Dioxide and Other Greenhouse Gases. Greenhouse gases are those gases—such as water vapor, carbon dioxide (CO2), methane, nitrous oxide, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride—that are transparent to solar (short-wave) radiation but opaque to long-wave (infrared) radiation, thus preventing long-wave radiant energy from leaving Earth's atmosphere. The net effect is a trapping of absorbed radiation and a tendency to warm the planet's surface.

The vast majority of U.S. CO2 emissions come from fossil fuel combustion, with smaller amounts from the non-combustion use of fossil fuels, as well as from electricity generation using geothermal energy and non-biomass waste. Other sources of CO2 emissions include industrial processes, such as cement and limestone production. Data in the U.S. Energy Information Administration's (EIA) *Monthly Energy Review* (MER) Tables 11.1–11.6 are estimates for U.S. CO2 emissions from energy consumption, plus the non-combustion use of fossil fuels (excluded are estimates for CO2 emissions from biomass energy consumption, which appear in MER Table 11.7).

For annual U.S. estimates of CO2 emissions from all sources, as well as emissions for other greenhouse gases, see the U.S. Environmental Protection Agency's *Inventory of U.S. Greenhouse Gas Emissions and Sinks* reports at https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020.

Note 2. Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion. Carbon dioxide (CO2) emissions from the combustion of biomass to produce energy are excluded from the energy-related CO2 emissions reported in MER Tables 11.1–11.6, but appear in MER Table 11.7. According to current international convention (see the Intergovernmental Panel on Climate Change's "2006 IPCC Guidelines for National Greenhouse Gas Inventories"), carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time. (This is not to say that biomass energy is carbon-neutral. Energy inputs are required in order to grow, fertilize, and harvest the feedstock and to produce and process the biomass into fuels.)

However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions. For example, the clearing of forests for biofuel crops could result in an initial release of carbon that is not fully recaptured in subsequent use of the land for agriculture.

To reflect the potential net emissions, the international convention for greenhouse gas inventories is to report biomass emissions in the category "agriculture, forestry, and other land use," usually based on estimates of net changes in carbon stocks over time.

This indirect accounting of CO2 emissions from biomass can potentially lead to confusion in accounting for and understanding the flow of CO2 emissions within energy and non-energy systems. In recognition of this issue, reporting of CO2 emissions from biomass combustion alongside other energy-related CO2 emissions offers an alternative accounting treatment. It is important, however, to avoid misinterpreting emissions from fossil energy and biomass energy sources as necessarily additive. Instead, the combined total of direct CO2 emissions from biomass and energy-related CO2 emissions implicitly assumes that none of the carbon emitted was previously or subsequently reabsorbed in terrestrial sinks or that other emissions sources offset any such sequestration.

Section 11 Methodology and Sources

To estimate carbon dioxide emissions from energy consumption for the *Monthly Energy Review* (MER), Tables 11.1–11.7, the U.S. Energy Information Administration (EIA) uses the following methodology and sources:

Step 1. Determine Fuel Consumption

Coal—Coal sectoral (residential, commercial, coke plants, other industrial, transportation, electric power) consumption data in thousand short tons are from MER Table 6.2. Coal sectoral consumption data are converted to trillion Btu by multiplying by the coal heat content factors in MER Table A5.

Coal Coke Net Imports—Coal coke net imports data in trillion Btu are derived from coal coke imports and exports data in MER Tables 1.4a and 1.4b.

Natural Gas (excluding supplemental gaseous fuels)—Natural gas sectoral consumption data in trillion Btu are from MER Tables 2.2–2.6.

Petroleum—Total and sectoral consumption (product supplied) data in thousand barrels per day for asphalt and road oil, aviation gasoline, distillate fuel oil, hydrocarbon gas liquids (HGL), jet fuel, kerosene, lubricants, motor gasoline, petroleum coke, and residual fuel oil are from MER Tables 3.5 and 3.7a–3.7c. For the component products of HGL (ethane/ethylene, propane/propylene, normal butane/butylene, isobutane/isobutylene, and natural gasoline [through 2021]) and "other petroleum" (aviation gasoline blending components, crude oil, motor gasoline blending components, naphthas for petrochemical feedstock use, other oils for petrochemical feedstock use, special naphthas, still gas, unfinished oils [through 2021], waxes, and miscellaneous petroleum products), consumption (product supplied) data in thousand barrels per day are from EIA's *Petroleum Supply Annual* (PSA), *Petroleum Supply Monthly* (PSM), and earlier publications (see sources for MER Table 3.5). Petroleum consumption data by product are converted to trillion Btu by multiplying by the petroleum heat content factors in MER Tables A1 and A3.

Biomass—Sectoral consumption data in trillion Btu for wood, biomass waste, fuel ethanol (minus denaturant), and biodiesel are from MER Tables 10.2a–10.2c.

Step 2. Remove Biofuels From Petroleum

Distillate Fuel Oil—Beginning in 2009, the distillate fuel oil data (for total and transportation sector) in Step 1 include biodiesel and renewable diesel fuel, which are non-fossil renewable fuels.

2009–2011: To remove the biodiesel portion from distillate fuel oil, data for biodiesel consumption (calculated using data from EIA, EIA-22M, "Monthly Biodiesel Production Survey") and biomass-based diesel fuel data (from EIA-810, "Monthly Refinery Report," EIA-812, "Monthly Product Pipeline Report," and EIA-815, "Monthly Bulk Terminal and Blender Report") are converted to trillion Btu by multiplying by the biodiesel heat content factor in MER Table A1, and then subtracted from the distillate fuel oil consumption values. To remove the renewable diesel fuel portion from distillate fuel oil, data for refinery and blender net inputs (from EIA-810, "Monthly Refinery Report," and EIA-815, "Monthly Bulk Terminal and Blender Report") are converted to trillion Btu by multiplying by the renewable diesel fuel heat content factor in MER Table A1, and then subtracted from the distillate fuel oil consumption values.

2012–2020: To remove the biodiesel portion from distillate fuel oil, data for biodiesel consumption (from MER Table 10.4) is subtracted from the distillate fuel oil consumption values. To remove the renewable diesel fuel portion from distillate fuel oil, data for refinery and blender net inputs (from EIA-810, "Monthly Refinery Report," and EIA-815, "Monthly Bulk Terminal and Blender Report") are converted to trillion Btu by multiplying by the renewable diesel fuel heat content factor in MER Table A1, and then subtracted from the distillate fuel oil consumption values.

2021 forward: To remove the biodiesel and renewable diesel fuel portions from distillate fuel oil, data for refinery and blender net inputs (from EIA-810, "Monthly Refinery Report," and EIA-815, "Monthly Bulk Terminal and Blender Report") are converted to trillion Btu by multiplying by the biodiesel and renewable diesel fuel heat content factors in MER Table A1, and then subtracted from the distillate fuel oil consumption values.

Motor Gasoline—Beginning in 1993, the motor gasoline data (for total, commercial sector, industrial sector, and transportation sector) in Step 1 include fuel ethanol, a non-fossil renewable fuel. To remove the fuel ethanol portion from motor gasoline, data in trillion Btu for fuel ethanol consumption (from MER Tables 10.2a, 10.2b, and 10.3) are subtracted from the motor gasoline consumption values. (Note that about 2% of fuel ethanol is fossil-based petroleum denaturant, to make the fuel ethanol undrinkable. For 1993–2008, petroleum denaturant is double counted in the PSA product supplied statistics, in both the original product category—e.g., natural gasoline—and also in the finished motor gasoline category; for this time period for MER Section 11, petroleum denaturant is removed along with the fuel ethanol from motor gasoline, but left in the original product. Beginning in 2009, petroleum denaturant is counted only in the PSA/PSM product supplied statistics for motor gasoline; for this time period for MER Section 11, petroleum denaturant is left in motor gasoline.)

Step 3. Remove Carbon Sequestered by Non-Combustion Use

The following fuels have industrial non-combustion uses as chemical feedstocks and other products: coal, natural gas, asphalt and road oil, distillate fuel oil, hydrocarbon gas liquids (ethane/ethylene, propane/propylene, normal butane/butylene, isobutane/isobutylene, and natural gasoline), lubricants (which have industrial and transportation non-combustion uses), naphthas, other oils, petroleum coke, residual fuel oil, special naphthas, still gas, waxes, and miscellaneous petroleum products. See Tables 1.12a and 1.12b for estimates of fossil fuel non-combustion uses.

In the non-combustion use of these fuels, some of the carbon is stored (sequestered) in the final product, and EIA subtracts this from the fuel consumption values in Steps 1 and 2. EIA calculates the amount of carbon sequestered as the product of the non-combustion use of fossil fuels shown in MER Table 1.12b and the following carbon sequestration factors. The factors range from 0.00 to 1.00. A factor of 0.00 indicates that the fuel does not sequester any carbon (all is emitted), while a factor of 1.00 indicates that the fuel sequesters all of the carbon (none is emitted). EIA uses the following carbon sequestration factors: coal—0.75; natural gas used to produce hydrogen—0.00; natural gas used for other manufacturing—0.44; asphalt and road oil—1.00; distillate fuel oil—0.50; hydrocarbon gas liquids—0.80; lubricants—0.50; naphthas used for petrochemical feedstock—0.75; other oils used for petrochemical feedstock—0.50; petroleum coke used for aluminum production—0.00; petroleum coke used for other manufacturing—0.50; residual fuel oil—0.50; special naphthas—0.00; still gas—0.80; waxes—1.00; and miscellaneous petroleum products—1.00.

Step 4. Determine Carbon Dioxide Emissions From Energy Consumption

EIA calculates carbon dioxide (CO2) emissions data in million metric tons as the product of the consumption values in trillion Btu from Steps 1 and 2 (minus the carbon sequestered by non-combustion use in Step 3) and the annual CO2 emissions factors at https://www.eia.gov/environment/emissions/xls/CO2 coeffs detailed.xls.

Except for plant condensate and unfractionated stream (which are EIA estimates), the CO2 emissions factors for fossil fuels are from the U.S. Environmental Protection Agency, *Inventory of U.S. Greenhouse Gas Emissions and Sinks*, Tables A-22, A-34, and A-230. EIA converts metric tons of carbon to metric tons of CO2 using the approximate molar mass (44/12)—see https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021.

Coal—EIA calculates coal CO2 emissions for each sector (residential, commercial, coke plants, other industrial, transportation, electric power). Total coal emissions are the sum of the sectoral coal emissions.

Coal Coke Net Imports—EIA calculates coal coke net imports CO2 emissions for the industrial sector.

Natural Gas—EIA calculates natural gas CO2 emissions for each sector (residential, commercial, industrial, transportation, electric power). Total natural gas emissions are the sum of the sectoral natural gas emissions.

Petroleum—EIA calculates CO2 emissions for each petroleum product and sector. Total petroleum emissions are the sum of the product emissions. Total HGL emissions are the sum of the emissions for the component products (ethane/ethylene, propane/propylene, normal butane/butylene, isobutane/isobutylene, and natural gasoline). EIA estimates residential, commercial, and transportation sector HGL emissions as the product of the HGL consumption values in trillion Btu from MER Tables 3.8a and 3.8c and the propane emissions factor. EIA estimates industrial sector HGL emissions as total HGL emissions minus emissions by the other sectors.

Geothermal and Non-Biomass Waste—EIA estimates annual CO2 emissions data for geothermal and non-biomass waste on Form EIA-923, "Power Plant Operations Report" (and predecessor forms). EIA estimates monthly data by dividing the annual data by the number of days in the year and then multiplying by the number of days in the month. Annual estimates for the current year are set equal to those of the previous year.

Biomass—EIA calculates wood, biomass waste, and biofuel CO2 emissions for each sector. Total emissions for each biomass fuel are the sum of the sectoral emissions. EIA uses the following CO2 emissions factors, in million metric tons CO2 per quadrillion Btu: wood—93.80; biomass waste—90.70; fuel ethanol—68.44; and biodiesel—73.84. For 1973—1988, EIA estimates the biomass portion of waste in MER Tables 10.2a—10.2c as 67%; for 1989—2000, the annual biomass portion of waste ranges from 67% in 1989 to 58% in 2000, based on the biogenic shares of total municipal solid waste shown in EIA's "Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy," Table 1 at https://www.eia.gov/totalenergy/data/monthly/pdf/historical/msw.pdf.

THIS PAGE INTENTIONALLY LEFT BLANK