
 In Use(d) Not in Use(e) Dont Know In Use(d) Not in Use(e) Dont Know Estabishmenis(0) otal United States

$$
297
$$

[^0]\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(cNalcs
code()\)} \& \multirow[b]{2}{*}{Salected Sussectors and Industry} \& \multirow[b]{2}{*}{Estabishments（b）} \& \multirow[t]{2}{*}{} \& \multicolumn{3}{|l|}{Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers} \& \multicolumn{3}{|l|}{Conventional Combusion Turbines with Heat Recovery} \& \multicolumn{3}{|l|}{Combined－Cycle Combusion Turbines} \& \multicolumn{3}{|l|}{Internal Combusion Engines with Heat Recovery} \& \multicolumn{3}{|l|}{Steam Turbines Supplied by Heat Recovered from High－ Temperature Processes} \\
\hline \& \& \& \& in Use（d） \& Not in Use（e） \& Dont Know \& In Use（d） \& Notin Use（e） \& Don＇t Know \& In Use（d） \& Not in Use（e） \& Don＇K Know \& In Usef（d） \& Notin Use（e） \& Sont Kn \& In Use（d） \& Not in Use（e） \& Don＇t Know \\
\hline \multicolumn{19}{|c|}{Total United States} \\
\hline 311 \& Food \& 0.0 \& 37.9 \& 9.8 \& 2.1 \& 18.8 \& 17.9 \& 2.0 \& 19.9 \& 35.2 \& 2.2 \& 18.4 \& 47.4 \& \& 19.3 \& 21.5 \& \& 20.2 \\
\hline \({ }_{312}^{312}\) \& Grain and oissed M Miling \& 0.0 \& 7.5 \& 5.0 \& 1.4 \& 35.5 \& 4.6 \& 1.6 \& 30.8 \& \({ }^{8.6}\) \& \({ }^{1.5}\) \& 30.6 \& 70.0 \& \({ }^{2} .5\) \& 30.6 \& 8.6 \& \({ }^{1.5}\) \& \({ }^{33.1}\) \\
\hline \({ }_{3}^{3112121}\) \& Wet Corn Muling \& \({ }_{0}^{0.0}\) \& \({ }_{0.0}^{0.0}\) \& 0．0 \& \({ }_{0}^{0.0}\) \& \({ }_{0.0}^{0.0}\) \& 0.0
0.0 \& 0.0
0.0 \& \({ }_{0.0}^{0.0}\) \& \({ }_{0.0}\) \& 0.0
0.0 \& \({ }_{0.0}^{0.0}\) \& x \& 0.0
0.0 \& 0.0
0.0 \& \({ }_{0.0}{ }^{\text {a }}\) \& 0.0
0.0 \& \({ }_{0.0}^{0.0}\) \\
\hline \({ }_{3}^{3114}\) \& Frut and V Vegtatile Preserving and Specialy foods \& 0.0 \& \({ }^{13,6}\) \& 12.1 \& 5.1 \& 30.5 \& 8.6 \& 4.6 \& \({ }^{342}\) \& \({ }^{\times}\) \& 5.2 \& \({ }^{30.3}\) \& 35.7 \& 4.6 \& 35.1 \& 10.1 \& 4.6 \& 35.1 \\
\hline 年3115 \& \& 0.0
0.0 \& \({ }_{38.5}^{14.7}\) \& \({ }_{75.3}^{6.7}\) \& 0.7
29 \& \({ }_{23,6}^{19.7}\) \& \({ }_{41.1}^{28,3}\) \& \begin{tabular}{l}
0.8 \\
2.5 \\
\hline 28
\end{tabular} \& \({ }_{23,9}^{21.2}\) \& ¢ \({ }_{75.3}^{6.7}\) \& \begin{tabular}{l}
0.8 \\
2.5 \\
\hline 2
\end{tabular} \& \({ }_{22.5}^{20.1}\) \& \({ }_{47,9}^{687}\) \& \begin{tabular}{l}
0.8 \\
2.6 \\
\hline 8
\end{tabular} \& \({ }_{220}^{20.4}\) \& \({ }_{75.3}{ }^{\text {a }}\) \& \begin{tabular}{l}
0.7 \\
2.9 \\
\hline 8
\end{tabular} \& \({ }_{24,3}^{21.4}\) \\
\hline 312 \& Beverage and Tobacco Products \& 0.0 \& 12.3 \& 7.1 \& 2.4 \& 34.0 \& 10.2 \& 2.7 \& \({ }_{33,2}\) \& \& \({ }_{28}^{28}\) \& 30.9 \& 43.6 \& \({ }_{28}^{28}\) \& 31.1 \& \({ }_{29.2}\) \& 2.7 \& \({ }_{34,7}\) \\
\hline \({ }_{\substack{3121 \\ 3122}}\) \& \({ }_{\text {E }}\) Severages \& \({ }_{0}^{0.0}\) \& \(\stackrel{123}{\times}\) \& \(\stackrel{71}{\times}\) \& 2.5
0.0 \& \({ }_{0}^{35.0}\) \& \(\stackrel{102}{\times}\) \& 2.8
0.0 \& \({ }^{34.4}\) \& \(\stackrel{\times}{\times}\) \& \({ }_{0}^{2.0}\) \& \begin{tabular}{c}
32.0 \\
0.0 \\
\hline
\end{tabular} \& \(\underset{\times}{43.6}\) \& 2.9
0.0 \& 31.9
0.0 \& \(\stackrel{29.2}{\times}\) \& 2.8
0.0 \& 35.5
0.0 \\
\hline 313 \& Texile Mils \& \({ }_{0}^{0.0}\) \& 10.5 \& 9.0 \& \({ }_{3.5}^{0.0}\) \& 34.7 \& 9.0 \& \({ }_{4} 4\) \& 31.5 \& x \& \({ }_{4.0}\) \& \({ }_{3,3}\) \& \({ }_{11.8}\) \& \({ }_{4}^{4.6}\) \& 29.2 \& 18.1 \& \({ }_{3.4}\) \& 36.2 \\
\hline \({ }^{314}\) \& Texile Product Mils \& 0.0 \& \({ }_{99}^{592}\) \& \({ }^{\times}\) \& 10.1 \& \({ }_{3}^{35.8}\) \& \(\times\) \& 10.1 \& 35.8 \& \(\times\) \& 10.1 \& \({ }^{35.8}\) \& 59.2 \& 10.1 \& 35．8 \& \& \& 35．8 \\
\hline 315
316 \& \& \({ }_{0}^{0.0}\) \& \(\stackrel{98.5}{\times}\) \& x \& 15.6
6.6 \& \({ }_{88.7}^{34.2}\) \& \({ }^{\times}\) \& \begin{tabular}{l}
15.6 \\
6.6 \\
\hline
\end{tabular} \& 年 \begin{tabular}{c}
34.2 \\
50.6 \\
\hline
\end{tabular} \& x \& 15.7
6.6 \& \({ }_{48.3}^{33.6}\) \& x \& 5.6
6.6
6， \& \({ }_{47,9}^{34.2}\) \& \(\stackrel{98.5}{\text { 9 }}\) \& \& 34.2
50.6 \\
\hline 321 \& Weod Produts \& \({ }_{0}^{0.0}\) \& 23.1 \& 30.8 \& \({ }_{25}{ }^{6.6}\) \& \({ }_{16,2}\) \& 7.2 \& \({ }_{2}^{6.6}\) \& \({ }_{15} 15.9\) \& \({ }_{6.4}\) \& \({ }_{25}^{620}\) \& \({ }_{159} 15\) \& 44.4 \& \({ }_{2} 2.7\) \& 15.6 \& 7.8 \& \({ }_{2}^{1.5}\) \& \({ }_{\text {cke }}^{16.3}\) \\
\hline \({ }_{3212113}^{32113}\) \& Veneer，Plywood，and Engineered Woods \& \({ }_{0.0}^{0.0}\) \& （13．4 \& \({ }_{8.2}^{9.7}\) \& \begin{tabular}{l}
3.9 \\
2.0 \\
\hline
\end{tabular} \& \({ }_{\substack{16.8 \\ 19.1}}^{102}\) \& －6．4 \& \({ }_{2}^{3.1}\) \& 16.6
18.2 \& \(\stackrel{6.4}{\times}\) \& 3．0 \& \({ }_{18,5}^{17.5}\) \& \(\stackrel{44.4}{\times}\) \& \({ }_{2}^{29}\) \& \({ }_{18.1}^{16.1}\) \& \({ }_{\substack{6.4 \\ 53}}^{\text {c，}}\) \& 3，8
1.9 \& \({ }_{19,1}^{17.5}\) \\
\hline \& Reconstitued Wood Products \& 0.0 \& 20.1 \& 13.5 \& 5.1 \& 38.7 \& 13.5 \& 5.2 \& \& \(\times\) \& 3.7 \& 35.2 \& \(\times\) \& 3.7 \& 34.9 \& 53.3 \& \& 34.8 \\
\hline \({ }_{322}^{3219}\) \& \({ }_{\text {Pather }}^{\text {Other Wood Products }}\) \& \({ }_{0}^{0.0}\) \& \({ }_{0.1}^{622}\) \& \({ }_{0.1}^{68.9}\) \& \({ }_{3,2}^{3.9}\) \& \({ }_{310}^{28,3}\) \& 23.0
0.0 \& \({ }_{3.5}^{4.2}\) \& \({ }_{283}^{27.2}\) \& \({ }_{0} \times\) \& \({ }_{3.5}^{4.0}\) \& \({ }_{279}^{27.2}\) \& －\({ }_{0}\) \& \({ }_{34}^{4.2}\) \& \({ }_{295}^{26.7}\) \& \({ }_{0}^{17.0}\) \& \& \({ }_{314}^{28.1}\) \\
\hline \({ }_{3222110}\) \& \({ }_{\text {Paper }}^{\substack{\text { Papal mils }}}\) \& \({ }_{0.0}^{0.0}\) \& \({ }_{0}^{0.0}\) \& 0.0 \& \& \& 0.0 \& \({ }_{0.0}^{3.0}\) \& \& \({ }_{0.0}^{0.0}\) \& \& \& \({ }^{0.0}\) \& \({ }^{3.0}\) \& \& \({ }_{0}^{0.0}\) \& \({ }_{0.0}^{3.1}\) \& \\
\hline \({ }_{322122}^{32121}\) \& Paper Mils，excepi Newsprint
Newsprint Muls \& 0.0
0.0 \& 0.0
0.0 \& \({ }_{0.0}^{0.0}\) \& \({ }_{0}^{0.0}\) \& \({ }_{0.0}^{0.0}\) \& \(\stackrel{0}{\mathrm{o}} \mathrm{i}\) \& \({ }_{0}^{0.0}\) \& \({ }_{0.0}^{0.0}\) \& \(\stackrel{0.0}{\times}\) \& \({ }_{0}^{0.0}\) \& 0.0
0.0 \& \(\stackrel{0.0}{\times}\) \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& \& 0.0
0.0 \\
\hline 322130 \& Paperoard Mils \& 0.0 \& 0.0 \& 0.0 \& \({ }_{0}^{0.0}\) \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& \& 0.0 \\
\hline \({ }_{324}^{323}\) \& Persing and Realeas Suporit \& \({ }_{0.0}^{0.0}\) \& 78.8
12.1 \& 0.3 \& \({ }_{2,3}^{28}\) \& \({ }_{177}^{188}\) \& \({ }_{9.7}^{92.9}\) \& \({ }_{23}^{27}\) \& \({ }_{17,3}^{19.3}\) \& 0.0 \& \({ }_{22}^{26}\) \& \({ }_{16,7}^{20.2}\) \& \({ }^{87}{ }_{2} 8\) \& \({ }_{2}^{32}\) \& \({ }_{18.1}^{18.0}\) \& \({ }_{15.3}\) \& \& \({ }_{18.8}^{20.2}\) \\
\hline \({ }_{3}^{32411}\) \& Petoloum Refineries \(\begin{aligned} \& \text { Asphat Paning Mxure end Block }\end{aligned}\) \& \({ }_{0}^{0.0}\) \& \({ }^{7} 7.5\) \& \(\stackrel{0.0}{\times}\) \& 0.0
3.4 \& \({ }_{21.3}^{0.0}\) \& 0.0
5.3 \& \({ }_{3.4}^{0.0}\) \& 0.0
20.6 \& \(\stackrel{0.0}{\times}\) \& 0.0
3.4 \& \({ }_{20.3}^{0.0}\) \& 0.0
5.3 \& \({ }_{3.4}^{0.0}\) \& 1.0
18.9 \& \({ }_{92,}^{0.0}\) \& \& \({ }_{22.0}^{0.0}\) \\
\hline \({ }_{324199}\) \& Other Petroleum and Coal Products \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& \({ }^{\text {x }}\) \& 0.0 \& 0.0 \& \({ }^{\text {x }}\) \& 0.0 \& 0.0 \& \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 20．0 \\
\hline \({ }_{325110}^{325}\) \& Chemicals \& 0.0 \& \({ }^{129}\) \& 11．0 \& \({ }_{00}^{22}\) \& \({ }^{20.6}\) \& \(\begin{array}{r}25,2 \\ 0 \\ \hline 0\end{array}\) \& \({ }_{0}^{24}\) \& \({ }^{20.0}\) \& 5.7 \& 24 \& 19.0 \& 10．9 \& \({ }^{24}\) \& \& 2， 2.6 \& \& \\
\hline \({ }_{325120}^{32510}\) \& Industrial Cases \& \({ }_{0.0}^{0.0}\) \& 63.2 \& \({ }_{14,1}\) \& \({ }_{6.7} 6\) \& 2.4 \& 91.1 \& 10．2 \& \({ }_{22,6}\) \& \({ }^{\text {¢ }}\) \& \({ }_{6.6}^{0.6}\) \& 2.6 \& 14.1 \& \({ }_{7,2}\) \& 22.4 \& \({ }^{\text {x }}\) \& \& 226 \\
\hline \({ }_{3255182}^{321}\) \& Alalies and chlorine \& \({ }_{0}^{0.0}\) \& \({ }_{0}^{0.0}\) \& \({ }_{0}^{0.0}\) \& \({ }_{0}^{0.0}\) \& \(\stackrel{0.0}{\text { ¢ }}\) \& \(\stackrel{0}{\mathrm{o}} \mathrm{X}\) \& \({ }_{0}^{0.0}\) \& \(\stackrel{0.0}{\times}\) \& \(\stackrel{0}{\mathrm{o}} \mathrm{\sim}\) \& \({ }_{0}^{0.0}\) \& \({ }_{0}^{0.0}\) \& \(\stackrel{0.0}{\times}\) \& \({ }_{0}^{0.0}\) \& \({ }_{0}^{0.0}\) \& \({ }_{0.0}^{0.0}\) \& \({ }_{0.0}^{0.0}\) \& \(\stackrel{0.0}{x}\) \\
\hline \& \& 000 \& 24.1 \& ＋11．6 \& －0．3 \& \({ }_{23}^{23.4}\) \& \({ }^{11.6}\) \& －0， \& 18.1 \& \(\times\) \& 0．2 \& 18．0 \& 11．6 \& \& 28．0． \& 41.5 \& \& 28.0 \\
\hline \({ }_{325593}^{32929}\) \& Etity Alcono \& \({ }_{0}^{0.0}\) \& 30.0 \& \({ }^{14.6}\) \& 0.9 \& 4.3 \& \({ }_{8}^{8.6}\) \& \({ }_{0}^{0.6}\) \& 4.3 \& ¢ \& 0.5 \& 6.5 \& \(\times\) \& 2.0 \& 26.7 \& 58.0 \& 4.0 \& 4.3 \\
\hline \({ }_{\substack{325199}}^{32511}\) \& Onter Basic organic Chenicals \& \({ }_{0}^{0.0}\) \& \begin{tabular}{l}
13.2 \\
13.0 \\
\hline
\end{tabular} \& 12.6
10.0 \& \({ }_{4.0}^{4.9}\) \& \({ }_{44,7}^{46.4}\) \& \({ }_{14.7}^{17.2}\) \& \({ }_{4.1}^{5.0}\) \& \({ }_{43.9}^{44.3}\) \& \({ }^{10.6}\) \& \({ }_{4}^{4.8}\) \& \({ }_{\substack{419 \\ 36.2}}^{41}\) \& \({ }_{7,9}^{10.6}\) \& \({ }_{4.8}^{4.8}\) \& \({ }_{36}^{43.3}\) \& \({ }_{\substack{13.7 \\ 12.8}}\) \& 4．80 \& \({ }_{39.0}^{46.0}\) \\
\hline \({ }_{325222}^{325}\) \& Synteicic Rubber Noncelusicicranic Fibers \& \({ }_{0}^{0.0}\) \& \({ }_{0}^{16.8}\) \& 14.8
0.0 \& \({ }_{0.0}^{2.7}\) \& \({ }_{0.0}^{15.2}\) \& \(\underset{\mathrm{22.5}}{ }\) \& \({ }_{0.0}^{2.2}\) \& \({ }_{0.0}^{15.7}\) \& \({ }^{35.3} \times\) \& \({ }_{0.0}^{2.1}\) \& \({ }_{0.0}^{15.3}\) \& \({ }_{\mathrm{x}}^{\mathrm{x}}\) \& \({ }_{0}^{1.9}\) \& 14.9
0.0 \& \(\stackrel{35.3}{\times}\) \& \& \({ }^{15.7}\) \\
\hline \({ }_{\substack{325311 \\ 325312}}\) \& Nitroesuous ferilizers \& 000 \& 0 \& 000 \& 000 \& 0.0 \& 000 \& 000 \& 000 \& 0.0 \& 0．0 \& 0 \& 0.0 \& 0.0 \& 000 \& 0.0 \& 0．0 \& 0.0
0.0 \\
\hline \(\underset{\substack{3254 \\ 325412}}{ }\) \& \& 0.0
0.0
0.0 \& \({ }_{20 .}^{29.3}\) \& 9，\({ }^{0.0}\) \& \({ }^{3.9}\) \& \& \begin{tabular}{l}
43， \\
\hline 102 \\
102
\end{tabular} \& \({ }_{4}^{0.0}\) \& \& \& \({ }_{48}^{4.0}\) \& 3， \(\begin{aligned} \& 3.0 \\ \& 461 \\ \& 46 .\end{aligned}\) \& 31．7
312 \& 4.7 \& 320 \& \(\stackrel{0.0}{\times}\) \& \& \\
\hline \({ }_{\substack{325412 \\ 32592}}\) \& \& 0.0
0.0 \& \({ }_{21.4}^{20.4}\) \& \begin{tabular}{l}
10.2 \\
21.4 \\
\hline
\end{tabular} \& \({ }_{3,3}^{1.2}\) \& \({ }_{223}^{22.6}\) \& － \(\begin{gathered}10.2 \\ 53.2\end{gathered}\) \& \({ }_{2}^{1.0}\) \& \({ }_{14,1}^{23.4}\) \& －\({ }_{53,2}^{10.2}\) \& \({ }^{4.8}\) \& \({ }_{14.1}^{46.1}\) \& \({ }_{53,2}^{37.2}\) \& \({ }_{1 / 8}^{4.8}\) \& \({ }_{14.1}^{46.2}\) \& \({ }_{53}{ }^{\text {x }}\) \& \({ }_{1: 8}^{1.2}\) \& \({ }_{14.1}^{22.3}\) \\
\hline \({ }_{327}^{326}\) \& Plasics and Rubuer Products \& \({ }_{0}^{0.0}\) \& \({ }_{\substack{659 \\ 10.6}}\) \& \({ }_{31.1}^{95.2}\) \& \({ }_{22}^{2,3}\) \& \({ }_{221 .}^{27.8}\) \& \({ }_{0.0}^{55.7}\) \& \({ }_{2.2}^{1.9}\) \& \({ }_{22.1}^{31.0}\) \& \({ }_{7.4}^{\times}\) \& \({ }_{2.1}^{1.9}\) \& \({ }_{224}^{31.3}\) \& \({ }_{3.1}{ }^{\text {x }}\) \& \({ }_{2.1}^{1.9}\) \& 30.6
228 \& \({ }_{4.4}\) \& \& 30.6
228 \\
\hline \({ }_{\substack{32721 \\ 32721}}^{3}\) \& \(\xrightarrow{\text { Brick and strucural Ciay }}\) File \& 0.0 \& \(\times\) \& x \& 5.4 \& 61.6 \& \({ }^{\text {x }}\) \& 5.4 \& 55.3 \& \({ }^{x}\) \& 5 \& 55.3 \& \(x\) \& 5.4 \& 51.7 \& \(\times\) \& 5.4 \& 年 21.6 \\
\hline 327212 \& Ofter Pressed and Blown Glass and Glassware \& \({ }_{0.0}^{0.0}\) \& \({ }^{0}\) \& x \& \({ }_{2,2}\) \& 33.8 \& x \& \({ }_{2}^{20}\) \& \({ }_{33} 3^{8}\) \& \({ }^{1}\) \& \({ }_{24}^{24}\) \& \({ }_{28,6} 8\) \& \({ }^{0}\) \& \({ }_{23}\) \& 31.0 \& x \& \& \({ }_{310}^{0.0}\) \\
\hline \({ }_{3227215}^{32715}\) \& \& 0.0 \& 0 \& \({ }^{\times}\) \& －0．0 \& \({ }_{20}^{0.0}\) \& \({ }^{\times}\) \& －0．0 \& \({ }^{0.0}\) \& \({ }^{\times}\) \& －0．0 \& 0.0
285 \& 80 \& \({ }^{0.0}\) \& \({ }_{313}^{0.0}\) \& \({ }_{\times}\) \& \& 0.0 \\
\hline \begin{tabular}{l}
327310 \\
3 \\
32710 \\
\hline
\end{tabular} \& \({ }_{\text {cemen }}\) Cemens \& 0.0 \& \({ }_{132}^{139}\) \& \(\stackrel{\times}{\times}\) \& \({ }^{0.1}\) \& \({ }_{132}^{20.5}\) \& \(\stackrel{\times}{\times}\) \& －0．6 \& \({ }_{25,5}^{30.9}\) \& \(\times\) \& 0．6 \& \({ }_{31,9}^{28.5}\) \& \({ }^{8.9}\) \& －0．6 \& \({ }_{25,3}\) \& \({ }_{13,2}\) \& \({ }^{6.7}\) \& \({ }_{25,4}^{30.4}\) \\
\hline \({ }_{\substack{327410 \\ 32720}}\) \& \({ }_{\substack{\text { Line } \\ \text { Opsum }}}^{\text {den }}\) \& 0.0
0.0 \& \({ }^{13.0}\) \& \({ }^{\times}\) \& 0.0
0.4 \& \({ }_{13.9}^{0.0}\) \& \({ }^{\times}\) \& \({ }^{0.0}\) \& \({ }_{13.9}^{0.0}\) \& \({ }_{13.9}{ }^{\text {x }}\) \& \({ }_{2.1}^{0.0}\) \& \({ }^{0.0}\) \& \({ }^{\times}\) \& \({ }^{0.0} 0\) \& \({ }_{13.9}^{0.0}\) \& \({ }^{0.0}\) \& \({ }_{0.4}^{0.0}\) \& \({ }_{13.9}^{0.0}\) \\
\hline \({ }_{331}^{32793}\) \& Mineral Wool \& \({ }_{0}^{0.0}\) \& \({ }_{27}{ }^{\text {¢ }}\) \& \({ }_{6.5}^{\text {x }}\) \& \({ }_{1,2}^{1.8}\) \& \({ }_{\text {c }}^{36.6}\) \& X
2
\(\times\) \& \({ }_{1,2}^{1.8}\) \& cise \begin{tabular}{c}
36.7 \\
13 \\
\hline
\end{tabular} \& \({ }_{6 \times 3}\) \& \({ }_{1,2}^{1,8}\) \& \({ }_{134}^{36.7}\) \& \({ }_{4} \times\) \& \({ }_{1,2}^{1.8}\) \& \({ }_{\substack{36.7 \\ 135}}\) \& \({ }_{28} \times\) \& \& \\
\hline \begin{tabular}{|}
33111 \\
33112 \\
\hline 12
\end{tabular} \& Ite \& 000 \& 0.0 \& \({ }_{0}^{0.0}\) \& 000 \& 0.0 \& \({ }_{0}^{2.0}\) \& 00 \& 0.0 \& \({ }^{0.0}\) \& 00 \& 0．0 \& －\({ }^{4.0}\) \& 0 \& 0．0 \& 0．0 \& \& 0．0 \\
\hline \({ }_{3312}^{3312}\) \& \& \({ }_{0}^{0.0}\) \& \({ }^{\times}\) \& x \& \({ }^{1.3}\) \& \({ }_{25}{ }^{\times} 7\) \& \({ }^{\times}\) \& \({ }^{1.6}\) \& 24.7 \& \({ }^{\times}\) \& \({ }_{1.4}^{0.0}\) \& 24.6 \& x \& \({ }_{1.4}^{1.0}\) \& \({ }_{24.6}\) \& x \& \({ }_{1.6}^{0.0}\) \& \({ }_{24}{ }^{0.7}\) \\
\hline \({ }_{3}^{3313}\) \& Alumina and Auminum Secondar smeling and loying of Auminum \& \({ }_{0}^{0.0}\) \& \({ }_{0}^{11.7}\) \& 32.6
\(\times\) \& \({ }_{0}^{0.7}\) \& \({ }_{0.0}^{7.5}\) \& \({ }_{0.0}^{5.1}\) \& 0.5
0.0 \& \({ }_{0.0}^{6.3}\) \& \(\underset{\times}{32.6}\) \& 0.5
0.0 \& \({ }_{0}^{6.9}\) \& \(\stackrel{\times}{\times}\) \& 0.4
0.0 \& \({ }_{0.0}^{6.7}\) \& \(\stackrel{\times}{\times}\) \& 0．0 0 \& \({ }_{0.0}^{6.7}\) \\
\hline \({ }_{3}^{33131315}\) \& Aluminu Sheet，Pate and Folls \& \({ }_{0}^{0.0}\) \& \({ }^{\times}\) \& \({ }^{\times}\) \& \({ }_{0}^{0.0}\) \& \({ }_{0,1}^{0.0}\) \& \({ }^{\times}\) \& 0.0
0.5 \& \({ }_{9.1}^{0.0}\) \& \({ }_{\times}^{\times}\) \& 0.0
0.5 \& \({ }_{8.3}^{0.0}\) \& \({ }^{\times}\) \& \({ }_{0}^{0.5}\) \& \({ }_{9.1}^{0.0}\) \& \({ }_{\text {x }} \times\) \& \({ }_{0.2}^{0.0}\) \& \({ }_{5.6}^{0.0}\) \\
\hline \({ }_{3}^{3314}\) \& Noorierusus Metals，exceitis ulumum \& 0.0 \& 6.4 \& 11.1 \& \({ }_{6}^{6.4}\) \& 35.2 \& 5.3 \& \({ }^{6.4}\) \& 36.7 \& \({ }^{11.1}\) \& \({ }^{6.4}\) \& 34.5 \& 11.1 \& \({ }^{6.4}\) \& 35.2 \& 1．1 \& \& 39.3 \\
\hline \({ }_{3315}^{3315}\) \& Foundies \& \({ }_{0}^{0.0}\) \& 6.2 \& \(\times\) \& \({ }_{0}^{0.9}\) \& 19.5 \& x \& 1.0 \& \(\stackrel{19.6}{ }\) \& \(\times\) \& \({ }^{1.0}\) \& \({ }^{19.1}\) \& \({ }_{6.2}\) \& \({ }^{1.1}\) \& \({ }^{19.4}\) \& \(\times\) \& 1.5 \& \({ }_{25,3}^{0.0}\) \\
\hline \({ }_{3}^{3315517}\) \& \& 0.0
0.0 \& \({ }^{6.5}\) \& \({ }^{\times}\) \& \({ }_{0}^{0.6}\) \& \({ }^{6.5} 1.7\) \& \(\times\) \& 30．8 \& \({ }^{66.1}\) \& \(\times\) \& 30．8 \& 6.5
392 \& \({ }^{11.5}\) \& \({ }^{1.1}\) \& \({ }_{\substack{26.6 \\ 356}}\) \& \(\stackrel{\times}{\times}\) \& 0.1
3.8

a \& 69.5
39.2 \\
\hline ${ }_{332} 31524$ \& Aumium Foundries，exeept Die－Cassing
Fabicieled Meal Products \& 0.0
0.0 \& ${ }_{95,2}{ }^{\text {a }}$ \& ${ }_{71.4}{ }^{\text {x }}$ \& 1.8
24 \& ${ }_{\substack{36.3 \\ 18.0}}$ \& 99.1 \& ${ }_{2.7}^{1.5}$ \& 38.1

16.0 \& \times \& | 1.1 |
| :--- |
| 2.6 | \& ${ }_{16,7}^{26.5}$ \& \times \& ${ }_{2,6}^{1.0}$ \& 34.6

16.6

10. \& \times \& | 1.0 |
| :--- |
| 2.5 | \& 40.3

17.2 \\
\hline ${ }_{334}^{333}$ \& Mactiner C \& 0.0

0.0 \& ${ }_{\substack{50,3 \\ 91.8}}$ \& ${ }_{95} \times$ \& | 1.8 |
| :--- |
| 3,2 |
| 18 | \& ${ }_{33,3}^{27.1}$ \& 90，3， \& 1.8

3.2
2， \& $\underset{\substack{27.1 \\ 31.6}}{ }$ \& ${ }^{\text {x }} \times$ \& 1.9
3.2
3 \& 254
330
30 \& ${ }^{\text {x }}$ x \& ${ }_{32}^{22}$ \& －${ }_{\text {22，}}^{226}$ \& ${ }^{\times}$ \& 2． \& －${ }_{\text {24，}}^{24}$ \\
\hline ${ }^{334413}$ \& Semiconductors and felited Devices \& ${ }_{0}^{0.0}$ \& ${ }_{14.9}^{14.8}$ \& $\stackrel{\text { x }}{ }$ \& ${ }^{3.25}$ \& － 22.4 \& 1499 \& 3,1
38
3 \& \& －8 \& a，
0.5
0.5 \& 边 31.1 \& \& a，

0.5
0.5
3 \& \& $\stackrel{8}{\text { x }}$ \& 3，
3．4
3，
2， \& \\
\hline ${ }_{336}^{335}$ \& \& ${ }_{0}^{0.0}$ \& 37.1 \& ${ }_{6.9}{ }^{\text {¢ }}$ \& $\begin{array}{r}3.8 \\ { }_{23} \\ \hline\end{array}$ \& ${ }_{35}^{428}$ \& ${ }_{9.4}{ }^{\times}$ \& 3.8
2.6 \& ${ }_{35.8}^{42.6}$ \& ${ }_{13.6} \times$ \& ${ }_{2.2}^{4.3}$ \& ${ }_{3}^{38.6} 4$ \& 70.1 \& 3.8
2.2 \& ${ }_{420}^{428}$ \& $\stackrel{\times}{\times}$ \& 3.8
2.5 \& ${ }_{37}^{428}$ \\
\hline ${ }_{336111}^{3311}$ \& \& ${ }_{0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }^{\text {x }}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }^{\times}$ \& 0.0
0.0 \& ${ }_{0.0}^{0.0}$ \& 0．0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& $\stackrel{\times}{x}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \\
\hline ${ }_{336411}^{334}$ \& Aerospace Product and Parts \& 0.0
0.0 \& ${ }_{16.8}^{14.2}$ \& ${ }_{10.5}^{9.8}$ \& 20
0.2 \& ${ }_{16.8}^{47.7}$ \& 10．5 \& 1.9
0.0 \& ${ }_{57}{ }^{512}$ \& $\substack{16.8 \\ 16.8}_{\substack{\text { a }}}$ \& ${ }_{0.6}^{0.6}$ \& 33.5
16.8
10 \& $\stackrel{524}{8}$ \& 0.5

0.0 \& （ 38.2 \& $$
\begin{array}{r}
x \\
x
\end{array}
$$ \& 0.5

0.0 \& ${ }^{36.7}$ \\

\hline ${ }_{\substack{336 \\ 339}}$ \& Aurritere and Relied Products \& －0．0 \& ¢ 51.7 \& 5．7 \& | 3.1 |
| :--- |
| 3.7 | \& | 20.5 |
| :--- |
| 199 |
| 10. | \& ${ }^{\text {¢ }}$ \& 0.0

3
3
20 \& ${ }^{26.9}$ \& （16．8 \& 0.2
3
3
20 \& \& ${ }^{\times}$ \& 0.0
3.1
a， \& ${ }^{26,5}$ \& $\stackrel{\times}{\times}$ \& a，

3.1
3 \& ${ }_{\text {26，}}^{26}$ \\
\hline 339 \& $\underset{\substack{\text { Misoclaneous } \\ \text { Toald }}}{\text { a }}$ \& 0.0
0.0 \& ${ }_{\substack{48.2 \\ 18.2}}$ \& ${ }_{16.2} \times$ \& ${ }_{0}^{2.8}$ \& ${ }_{6.4}^{19.9}$ \& $\xrightarrow{71.8} \mathbf{2 3}$ \& 2.8
0.8 \& ${ }_{6.3}^{19.9}$ \& ${ }_{47}{ }^{\times}$ \& 2.8
0.8 \& ${ }_{6}^{19.9}$ \& ${ }^{54.2}$ \& 2．8 \& ${ }_{6}^{19.2}$ \& ${ }_{21.5}$ \& 2．8 \& $\underset{6.4}{19.3}$ \\
\hline
\end{tabular}

[^1]
[^0]:

 Nelast hose estabishmentstint don ot hale

[^1]: hdustry Cassisfication Syssem（halcs）：

