Global natural gas markets: Prospects for US exports?

2015 EIA Energy Conference

Washington, D.C. June 15-16, 2015

Ronald D. Ripple, PhD

Mervin Bovaird Professor of Energy Business and Finance The University of Tulsa, USA

Outline

2

- Global natural gas
- > How has the past year affected projections of global natural gas markets?
- Effects of lower prices
 - Will lower prices affect Australia's LNG exports?
 - Will lower prices affect US export opportunities?
- Shipping cost differentials
- Japan and nuclear re-start
- > China's alternatives
- Summary

Australia proved reserves and production: 1980-2014

Source: BP Statistical Review of World Energy 2015

TULSA

Top ten natural gas producers Source: BP Statistical Review of World Energy 2015

Top ten natural gas consumers Source: BP Statistical Review of World Energy

Projected	regional	production	and	consump	tion
rojectea	rogroman	production	and	conserve	

							2013-2035
Region (Bcf/d)	2013	2015	2020	2025	2030	2035	growth
North America	87.8	93.4	107.9	119.6	129.4	137.4	0.56
S & C America	17.0	17.3	19.0	20.4	21.4	22.7	0.33
Europe & Eurasia	99.8	100.0	103.2	112.7	114.0	116.2	0.16
Middle East	54.9	60.6	72.0	78.8	84.8	89.3	0.63
Africa	19.7	21.8	24.2	27.8	39.4	43.5	1.20
Asia Pacific	47.3	54.9	66.7	67.1	70.5	81.4	0.72
Total Natural Gas Production	326.6	348.1	393.0	426.5	459.5	490.4	0.50
							2013-2035
Region (Bcf/d)	2013	2015	2020	2025	2030	2035	growth
North America	90.1	92.9	99.8	106.1	111.5	119.4	0.33
S & C America	16.3	16.5	19.2	21.0	23.1	25.1	0.54
Europe & Eurasia	102.9	102.4	108.2	112.9	117.3	121.0	0.18
Middle East	41.4	47.5	57.6	64.3	70.0	77.3	0.87
Africa	11.9	13.7	15.6	17.7	21.3	24.0	1.01
Asia Pacific	61.8	72.0	91.1	103.8	113.1	122.6	0.99
Total Natural Gas Consumption	324.4	345.1	391.4	425.8	456.3	489.5	0.51

Source: BP Energy Outlook to 2035, Feb. 2015. Author conversion from Mtoe to Bcf/d

	Region "Gap" (BP-2015) Bcf/d	2015	2020	2025	2030	2035
Projected	North America	0.47	8.14	13.55	17.91	18.00
inojected	S & C America	0.80	-0.16	-0.54	-1.75	-2.48
regional	Europe & Eurasia	-2.47	-5.01	-0.21	-3.29	-4.86
	Middle East	13.09	14.47	14.54	14.79	12.01
	Africa	8.17	8.58	10.07	18.11	19.54
	Asia Pacific	-17.10	-24.41	-36.69	-42 .55	-41.23
	Total Natural Gas	2.96	1.61	0.72	3.22	0.97
"ann".						
gap.	Region "Gap" (BP-2014) Bcf/d	2015	2020	2025	2030	2035
BP2014 and	North America	-0.79	5.08	10.06	13.61	13.69
BP2015	S & C America	1.09	0.63	-0.37	-1.49	-1.74
1.00	Europe & Eurasia	-1.87	-0.81	-0.49	-0.05	0.64
difference	Middle East	15.51	15.40	14.88	14.19	14.07
	Africa	9.02	9.66	13.11	17.99	20.89
	Asia Pacific	-19.37	-23.18	-32.84	-42.86	-45.84
	Total Natural Gas	3.60	6.78	4.35	1.39	1.71
	Source: BP Energy Outlook to 2035, Feb. 2015	. Author c	onversion	from Mto	e to Bcf/d	14

Price changes over the	Month	Henry Hub spot	Japan spot arrival- basis	Arrival - HH	HH plus 15% plus \$3.00 tolling	Shipping cost "allowance"
past year:						
	Apr-2014	4.66	18.3	13.6	8.36	9.9
	May-2014	4.58	16.3	11.7	8.27	8.0
	Jun-2014	4.59	15.0	10.4	8.28	6.7
	Jul-2014	4.05	13.8	9.8	7.66	6.1
exports to	Aug-2014	3.91	12.5	8.6	7.50	5.0
Acio	Sep-2014	3.92	11.3	7.4	7.51	3.8
ASIA	Oct-2014	3.78	12.4	8.6	7.35	5.1
	Nov-2014	4.12	14.3	10.2	7.74	6.6
Sources: METI	Dec-2014	3.48	15.1	11.6	7.00	8.1
Jopon FIA and	Jan-2015	2.99	13.9	10.9	6.44	7.5
uthor coloulations	Feb-2015	2.87	10.7	7.8	6.30	4.4
	Mar-2015	2.83	7.6	4.8	6.25	1.3
	Apr-2015	2.61	7.9	5.3	6.00	1.9
THE UNIVERSITY of	% change	-58.0%	-84.0%	-94.7%	-33.1%	-165.6%

Australia LNG

Two things to remember

- The incentive to *invest* requires an expectation of a return sufficient to cover full costs—fixed and variable.
- The incentive to *operate* requires an expectation of a return sufficient to at least cover variable costs.
- > Australia currently has four operating LNG facilities (28.45 mtpy)
 - North West Shelf-Western Australia (16.3 mtpy)
 - Darwin—Northern Territories (3.6 mtpy)
 - Pluto—Western Australia (4.3 mtpy)
 - QCLNG—Queensland (4.25 mtpy)
- > And six under construction (53.2 mtpy), and several more "planned"

19

> A total of 81.65 mtpy expected by the end of 2016

Australia shipping advantage

LNG Carrier shipping cost comparison between XXX and YYY

140,000 m³ tanker => ~ 2,995,000 MMBtu

Accounts for round trip, includes 2 additional days for loading and unloading, \$35/nm fuel cost,

and \$0.20/MMBtu for Panama

						Day rate		
		Distance	Fuel	18	knots	\$ 70,000		
Po	rt-to-Port	nautical miles		Days	Hours	18 knots	Cost/N	//MBtu
Sabine	Zeebrugge	4861	\$ 340,248	13	6	\$ 1,855,000	\$	0.83
	Tokyo (S.Afr.)	15825	\$ 1,107,755	38	14	\$ 5,401,667	\$	2.47
	Tokyo (Panama)	9149	\$ 640,440	23	4	\$ 3,243,333	\$	1.67
Dampier	Tokyo	3762	\$ 263,319	10	16	\$ 1,493,333	\$	0.67

Sources: <u>Inverse com</u> for distance and time, "Assessment of LNG transport chains using weather-based voyage simulations", "Panama Canal Authority announced proposed LNG tolls", and author calculations.

LNG liquefaction capacity under construction

he 120 mtnu			(Capacity	1		
ne iza mipy	Country	Project	Bcm/y	Bcf/d	Mtpy	Major stakeholders	Target online
onstruction	Indonesia	Donggi Senoro LNG	2.7	0.26	2.0	Mitsubishi, Pertamina, Kogas, Medco	2015
onstruction	Indonesia	Sengkang	2.7	0.26	2.0	Energy World Corporation	2015
epresents an	Columbia	Caribbean FLNG	0.7	0.07	0.5	Pacific Rubiales, Exmar	2015
icrease of	Malaysia	MLNG Train 9	4.9	0.47	3.6	Petronas	2015
ver 43% from	Australia	Gorgon LNG	21.2	2.05	15.6	Chevron, Shell, ExxonMobil	2015
ne current	Australia	Gladstone LNG	10.6	1.03	7.8	Santos, Petronas, Total, Kogas	2015
perating	Australia	Australia Pacific LNG	12.2	1.18	9.0	ConocoPhillips, Origin, Sinopec	2015
apacity of 298	Malaysia	PFLNG 1	1.6	0.15	1.2	Petronas, MISC	2016
ntpy, all meant	United States	Sabine Pass LNG	24.5	2.37	18.0	Cheniere Energy	2016
be operating	Australia	Wheatstone	12.1	1.17	8.9	Chevron, Apache, KUFPEC	2016-17
y 2020.	Australia	Prelude FLNG	4.9	0.47	3.6	Shell, Inpex, Kogas	2016-17
	Australia	Icthys	11.4	1.10	8.4	Inpex, Total	2017-18
	Russia	Yamal LNG	22.4	2.17	16.5	Novatek, Total	2018+
	Malaysia	PFLNG 2	2.1	0.20	1.5	Petronas, Murphy Oil Corporation	2018
	United States	Cove Point LNG	7.1	0.69	5.2	Dominion	2018
	United States	Cameron LNG	16.3	1.58	12.0	Sempra Energy	2018-19
	United States	Freeport LNG	18.0	1.74	13.2	Freeport, Macquarie	2018-19
	Total		175.4	17.0	129.0		
THE UNIVERSITY of	46% of th	nis capacity is exp	ected to	be onlir	e by the	end of 2016.	21

Source: IEA, 2015 Medium-term Natural Gas Report

Japan's nuclear uncertainty

Japan has been and remains the largest importer of LNG-based natural gas, importing 120 Bcm (89.2 mt of LNG) in 2014, accounting for 36% of global trade.

- All of Japan's nuclear capacity has been shut down since the Fukushima Daiichi disaster in 2011.
- > Natural gas filled about 2/3 of the gap created by the shutdown.
- This increased demand for LNG-based natural gas by more than 25% between 2010 and 2014.
- > Up to four (4) reactors could be back online by the end of 2015.
- The IEA (Medium-term Gas Market Report, 2015) assumes 10GW of capacity in operation by 2020, reducing natural gas demand by 10 Bcm, or about 7.4 mtpy of LNG production.

China's uncertainty and alternatives

- Projections of China's natural gas demand vary widely, ranging from as little as 198 Bcm in 2020 to 485 Bcm.
- One interpretation (mine) of BP's 2015 Energy Outlook to 2035 suggests 379 Bcm by 2020, and the IEA's Medium-term Gas Market Report suggests about 328 Bcm, while noting considerable uncertainty.
- China's first natural gas imports originated in Australia, and LNG imports have increased between 2010-2014 from 12.8 Bcm to 27.1 Bcm, sourced from 18 different countries.
- Pipeline imports between 2010-2014 grew from 3.55 Bcm to 31.3 Bcm, sourced from 4 different countries.
- And more LNG regasification and import pipeline capacity are forthcoming.

24

China's import capacity: operating, planned, under construction

Regasification - operating						
Terminal	Capacity (Bcm/y)	Year				
Dalian	4.1	2011				
Guangdong	9.2	2006				
Dongguan	1.4	2013				
Fujian	3.6	2008				
Hainan	3.0	2014				
Qingdao	4.2	2014				
Rudong	4.8	2011				
Shanghai	0.3	2008				
Shanghai LNG	4.1	2009				
Tangshan	4.8	2013				
Tianjin	3.0	2013				
Zhejiang	4.1	2012				
Zhuhai	4.8	2013				
Total operating	51.4					
Source: GIINGL						

Regasification	- under constructi	on	
Terminal	Capacity (Bcm/y)	Year	LNG
Beihai	3.0	2015	Regarification
Diefu	4.0	2015	negasineation
Jieyang	2.0	2015	capacity –
Zhoushan	3.0	2017/18	evicting and
			Existing and
Under construction	12.0		planned
Source: GIINGL			

Table 6 Planned pipeline and import capacity							
Pipeline	Capacity (Bcm)	Import (Bcm)	Main import sources	Operation (year)	length (km)		
China-Myanmar pipeline	12	12	Myanmar	2013	1100		
Center Asia pipeline A/B	30	30	Turkmenistan,	2011	3298		
line			Kazakhstan				
Center Asia pipeline C	30	25	Uzbekistan	2015	1830		
Center Asia pipeline D line	30	30	Turkmenistan	2016	1000		
Power of Siberia pipeline (China-Russia east line)	38	35	Russia	2018	4000		
Altai pipeline (China-Russia west line)	30	25	Russia	2016	1300		

Natural gas pipelines – existing and planned THE UNIVERSITY of TULSA

Summary

Global natural gas has been affected by the evolution of the energy price environment.

- Asia-Pacific is expected to be in production-consumption deficit for the foreseeable future.
- Substantial supplies of natural gas from LNG and pipeline sources will be available, keeping downward pressure on prices.
- > Australia maintains an advantage over the US for Asia-Pacific natural gas markets due to geographic location, large capacity, and sunk costs.
- At current relative prices, and expected LNG shipping costs, margins from the US to Asia are likely to be much slimmer than previously expected.
- > Japan's nuclear re-start uncertainty clouds it's the level of demand.
- China's role as an LNG-based natural gas importer is unclear, with potential competition from pipeline imports and domestic production.

Thank you for the opportunity to speak with you!

Questions?

Comments?

Ronald D. Ripple, PhD Mervin Bovaird Professor of Energy Business and Finance

The University of Tulsa, USA

ron-ripple@utulsa.edu

