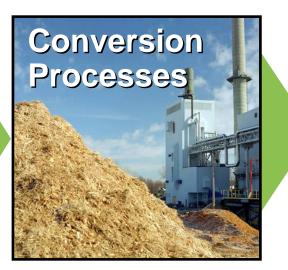


Cellulosic Ethanol and Advanced Biofuels Overview

EIA 2009 Energy Conference

David Humbird, PhD


April 7, 2009

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

The Biorefinery Concept

- Trees
- Grasses
- Agricultural crops
- Residues
- Animal wastes
- Municipal solid waste

- Enzymatic fermentation
- Gas/liquid fermentation
- Acid hydrolysis/ fermentation
- Gasification
- Combustion
- Co-firing
- Pyrolysis

Uses

Fuels

- Ethanol
- Renewable diesel

Power

- Electricity
- Heat

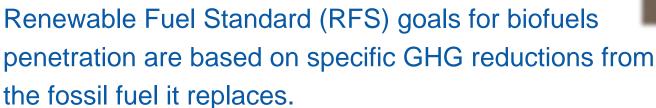
Chemicals

- Plastics
- Solvents
- Chemical intermediates
- Phenolics
- Adhesives
- Furfural
- Fatty acids
- Acetic acid
- Carbon black
- Paints
- Dyes, pigments, and ink
- Detergents

Food and Feed

U.S. National Commitment to Biofuels

<u>Near-term</u> – Cost Goal


"Cost-competitive cellulosic ethanol"

- Cost-competitive in the blend market by 2012

Longer-term – Volumetric Goal

EISA (Energy Independence & Security Act)

- **36 billion** gallons renewable fuel by 2022
 - 21 billion gallons cellulosic + advanced biofuels

- Biomass-based diesel
- Advanced biofuels
- Corn grain-based ethanol
- Cellulosic Biofuels

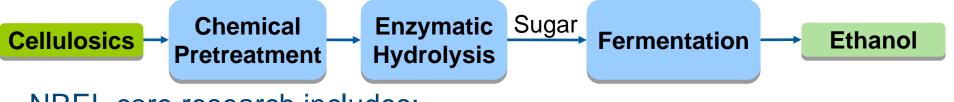
50% reduction 50% reduction 20% reduction 60% reduction

NREL Research Overview

NREL's National Bioenergy Center Facilities

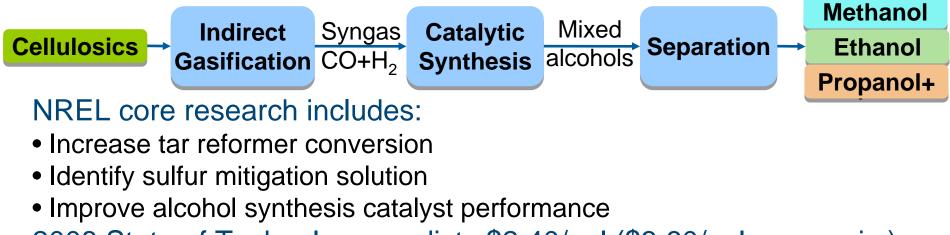
- **Thermochemical Conversion**
- Micro-reactors to pilot plants
 Biochemical Conversion
 - Bench scale to ton/day
- **Genomics Laboratory**
- Tools for strain development Biomass Characterization
 - Wet chemical and NIR
- **Spectroscopy Facilities**
 - nmr, IR, LIBS, MBMS

Biomass Feedstock Overview


- Feedstock cost and logistics research for DOE is carried out at Idaho and Oak Ridge National Labs
- Key challenges:
 - Collection, processing and storage logistics
 - Consistent supply and quality
 - Quantity sufficient to justify large biofuels plants
- Biomass ultimately needs an industrial-class distribution system similar to corn

Short rotation poplar ZeaChem, Inc.

Cellulosic ethanol research at NREL


Biochemical Ethanol

- NREL core research includes:
- Increase pretreatment conversion
- Reduce enzyme cost
- Reduce commodity chemical usage

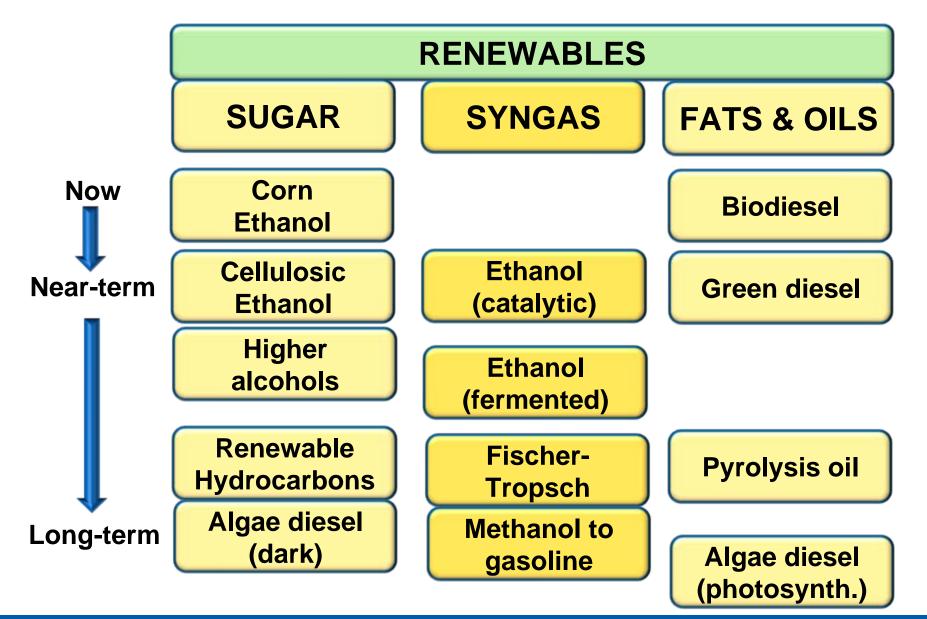
2008 State of Technology predicts \$2.61/gal (\$3.92/gal gas equiv.)

Thermochemical Mixed Alcohols

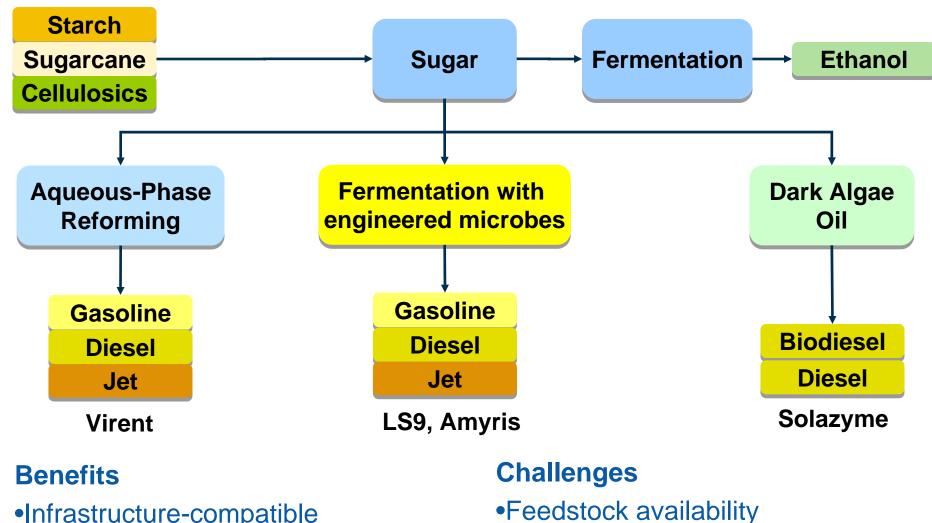
2008 State of Technology predicts \$2.40/gal (\$3.60/gal gas equiv.)

Cellulosic ethanol research at NREL

Biochemical Ethanol

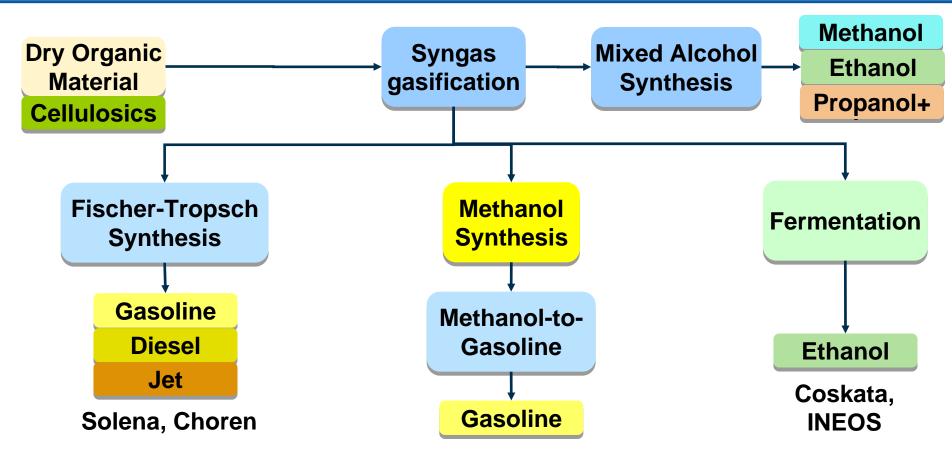

- Conversion of biomass to sugar is reasonably well understood
- Remaining challenges are not specific to ethanol as a product
- What else can sugar be used for?

Indirect Syngas Catalytic Mixed Concretion Methanol


Cellulosics Gasification CO+H₂ Catalytic Syngas Catalytic Synthesis Alcohols Separation + Ethanol Propanol+

- Current catalyst selectivity is marginally acceptable
- Mixed alcohol separation adds cost and complexity
- What else can syngas be used for?

Future options for liquid fuel

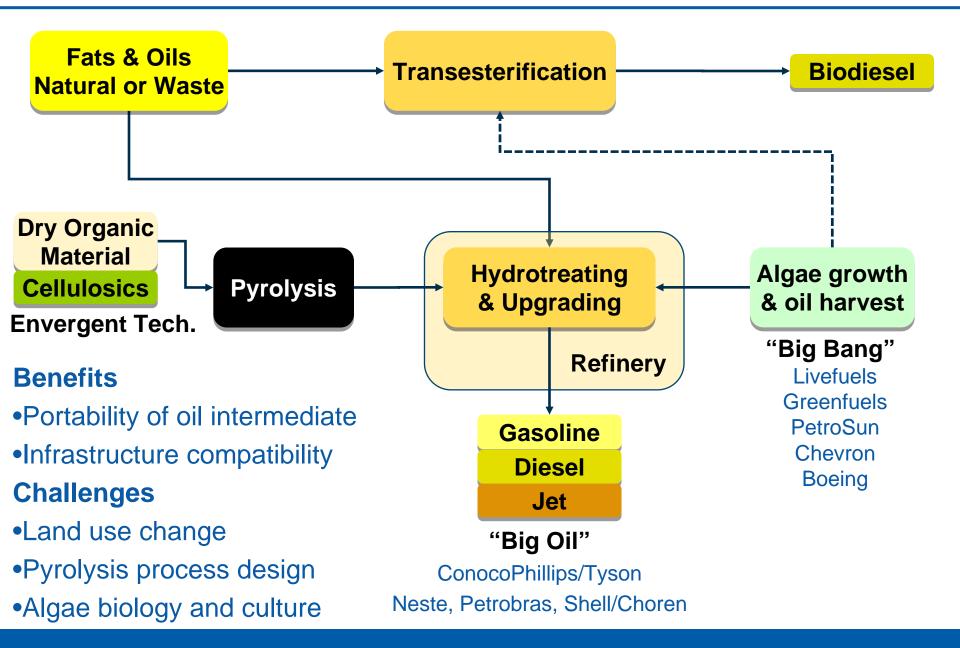

Advanced biofuels from sugar

Compatibility with cellulosic sugar

- Infrastructure-compatible
- •Highly controlled fuel properties

Advanced biofuels from synthesis gas

Benefits

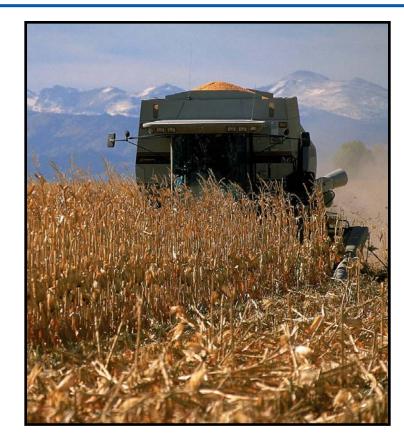

Product versatility

Proven technology

Challenges

- •Biomass collection radius dictates smallish plant size
- Limited economy of scale

Advanced biofuels from fats and oils



Fuel Summary Table

		Technology Status	Production Barriers	Market Barriers	Top Inhibitor
Nea Teri		Pilot/Demo	Low	Medium	Feedstock availability
	Thermo Mixed Alcohols	Pilot/Demo	Low	Medium	Feedstock availability
	Green Diesel	Demo	Low	Low	Feedstock cost vs. oil
	Fischer-Tropsch Diesel	Demo	Medium	High	Capital Investment
	Methanol-to- Gasoline	Demo	Medium	High	Capital Investment
	Renewable Hydrocarbons	Lab/Pilot	Medium	Medium	Feedstock availability
	Pyrolysis oil	Lab	High	Low	Process Technology
Lon Terr		Lab	Very High	Low	Process Technology

Summary and Conclusions

- Biofuels are the only renewable option for liquid transportation fuels
- Ethanol and biodiesel are the best near-term options for deployment, but we must transition to cellulosic biomass
- NREL researchers are working to reduce ethanol conversion costs and provide public information on biofuel production economics
- Cellulosic ethanol is in the pilot stage with several demo plants planned
- Several options for advanced biofuels with better infrastructure compatibility are on the horizon

Acknowledgements

DOE's Office of the Biomass Program

http://www.eere.energy.gov/biomass

NREL Biorefinery Analysis Team

- Andy Aden, Abhijit Dutta, David Hsu
- Helena Chum

Speaker information: David.Humbird@nrel.gov http://www.nrel.gov/biomass

References: Aqueous-Phase Reforming

Huber et al., Angew. Chem. Int. Ed. (2004).

Huber et al., Science (2005).

Synthetic Biology for Fuels

J. D. Keasling and H. Chou , *Nature Biotechnology*, **26**(3) 298, (2008). **Biomass Feedstocks**

J.R. Hess et al., Biofuels, Bioprod. Bioref., 1, 181 (2007).

