Drop-in biofuels in the AEO

EIA Biofuels Workshop Mac Statton, Industrial Process Analyst March 20, 2013 / Washington, DC

Overview

- What are drop-in biofuels?
- Technology assessment methodology
 - Technology descriptions
 - Process design review
 - Planned capacity
 - Production cost with learning
- Projections and implications
- Summary and look to the future

What are drop-in biofuels?

- Approved fuels
 - Meet ASTM specifications
 - Have received all necessary EPA approvals
- Infrastructure compatible
 - Can move in pipelines, trucks, and barges without equipment modification
 - Usable in existing fueling stations without modification
 - Usable by existing vehicle fleet without modification
- There is a continuum based on the above characteristics

Ethanol	Butanol/ FAME Biodiesel	HRJ - HEFA jet fuels	Diesel/ gasoline

Note: FAME stands for fatty acid methyl esters. HRJ stands for hydrotreated renewable jet. HEFA stands for hydrotreated esterified fatty acids.

How do you make drop-in biofuels?

Three pyrolysis technology options

- Non-catalytic fast pyrolysis
 - Produces 10% oxygen content product for sale to existing refineries
 - Used as process model for AEO2012
 - Several projects in Canada for producing food products, not fuels
- Biomass catalytic cracking (pyrolytic)
 - Produces zero oxygen content fuels for blending
 - Used as process model for AEO2013
 - Several planned projects by KiOR
- Integrated hydropyrolysis
 - Produces zero oxygen content fuels for blending
 - For consideration in future AEOs
 - No announced projects at this time

Process Design Review - Pyrolysis

Parameter	Units of measure	AEO 2012 'Pioneer Plant'	PNNL (2009)	lowa State – 'Pioneer plant' (2010)	lowa State – 'nth plant' (2010)	AEO 2013 'Pioneer plant'
Nameplate capacity	b/d	687	4,957	3,796	3,796	1,374
Overnight capital cost	\$/bd	\$78,726	\$61,118	\$154,087	\$52,679	\$158,507
Thermal efficiency	%	52	65	50	50	40
Capacity factor	%	90	90	90	90	90
Economic lifetime	Years	15	20	20	20	15
Construction lead time	Years	4	2.5	<2	<2	4
Feedstock						
Biomass	tons/day	438	2,205	2,205	2,205	1,128
Hydrogen	mcf/day	-	2,186	ND	ND	-
Electricity	MW	-	ND	ND	ND	-
Products						
Light ends	b/d	48	ND	ND	ND	-
Gasoline	b/d	618	2,073	ND	ND	652
Diesel	b/d	21	2,884	ND	ND	652

Two gasification technology options

- Fischer-Tropsch (FT) Synthesis
 - Used beginning in AEO2011 due to high quality diesel product
 - Recently there have been several project cancelations and decommissionings (e.g., Rentech, Choren)
- Methanol to Gasoline (MTG)
 - Produces light hydrocarbon product (~90% gasoline)
 - At least one new project has been announced
 - Co-integration of natural gas feedstock

Process Design Review - Gasification

Parameter	Units of measure	AEO 2013 'Pioneer Plant'	Wallace (Utrecht) – FT (2009)	PNNL – MTG (2009)	NREL – MTG (2011)
Nameplate capacity	b/d	3,143	1,882	2,609	3,235
Overnight capital cost	\$/bd	\$328,835	\$350,434	\$191,625	\$61,694
Thermal efficiency	%	51	51	47	50
Capacity factor	%	90	96	96	96
Economic lifetime	Years	15	20	20	20
Construction lead time	Years	4	3	2.5	2.5
Process Inputs					
Biomass	tons/day	2,027	2,000	2,000	2,000
Natural gas	mcf/day	-	ND	ND	ND
Products					
LPG	b/d	-	ND	ND	463
Naphtha	b/d	864	ND	ND	ND
Gasoline	b/d	-	ND	2,609	2,772
Diesel	b/d	2,279	ND	ND	ND
Electricity	MW	32	51	32	0

Technology Description – Green Diesel

Process steps

- Fatty acids are mixed with hydrogen and begin their conversion to hydrocarbons. CO2 and water are produced as well and are separated by lowering the pressure.
- The partially converted fatty acids are mixed with more hydrogen in a second reactor, removing the rest of the oxygen.
- Hydrocarbons are then separated into LPG and distillate range material
- Distillate range material is sometimes sent to a third reactor where it is isomerized for better fuel characteristics

Process technologies

- Syntroleum (licensor for Dynamic Fuels)
- UOP/Eni Ecofining (licensor for Diamond Green Diesel)
- Neste NexBTI

Existing and near-term planned capacity

Project Parameters			Plant Location		Announced Technology Parameters			
Process	Company	Status	Online Year	City	State	Nameplate (bpd)	Million US\$	\$/bd
Pyrolysis	KiOR	Startup	2012	Columbus	Mississippi	717	215	\$270,000
(gasoline, diesel)	KiOR	Construction	2014	Natchez	Mississippi	2,609	ND	ND
Gasification (gasoline)	Sundrop	Construction	2015	Alexandria	Louisiana	2,609	500	\$191,625
Green Diesel Creen Diesel Emera	Dynamic Fuels	Complete	2011	Geismar	Louisiana	4,809	127	\$25,959
	Diamond Green Diesel	Construction	2013	Norco	Louisiana	8,937	427	\$47,778
	Emerald Biofuels	Development	TBD	Plaquemine	Louisiana	5,544	ND	ND

While no projects have yet been announced, CRI/Criterion (refinery technology company related to Royal Dutch Shell) is marketing a pyrolysis technology called Integrated Hydropyrolysis and Hydroconversion (IH2)

If significant plant builds occur, production costs for certain drop-in biofuel technologies could fall due to process learning

Drop-in biofuel production cost \$/gallon

Notes: Feedstock costs assumptions are \$0.50/lb for renewable oils and \$50/ton for cellulosic biomass.

With NEMS, we transition from production cost point estimates to projections over time

Current projections indicate rapid growth of drop-in biofuels after 2030 as petroleum prices move higher than biofuel production costs

Million barrels per day

Summary and look to the future

- The biofuels industry is dynamic
- Potential technology changes for future AEOs
 - Update gasification and pyrolysis models
 - Conversions of ethanol plants to butanol plants
 - Improved yield, energy efficiency, and water use
- Potential competition between fuels and chemicals

For more information

U.S. Energy Information Administration home page | www.eia.gov

Short-Term Energy Outlook | <u>www.eia.gov/steo</u>

Annual Energy Outlook | www.eia.gov/aeo

International Energy Outlook | www.eia.gov/ieo

Monthly Energy Review | www.eia.gov/mer

EIA Information Center

InfoCtr@eia.gov

Our average response time is within three business days.

(202) 586-8800

24-hour automated information line about EIA and frequently asked questions.