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Summary 
 
It is often noted that energy prices are quite volatile, reflecting market participants’ 
adjustments to new information from physical energy markets and/or markets in energy-
related financial derivatives.  Price volatility is an indication of the level of uncertainty, 
or risk, in the market.  This paper describes how markets price risk and how the market-
clearing process for risk transfer can be used to generate “price bands” around observed 
futures prices for crude oil, natural gas, and other commodities.  These bands provide a 
quantitative measure of uncertainty regarding the range in which markets expect prices to 
trade. 
 
The Energy Information Administration’s (EIA) monthly Short-Term Energy Outlook 
(STEO) publishes “base case” projections for a variety of energy prices that go out 12 to 
24 months (every January the STEO forecast is extended through December of the 
following year). EIA has recognized that all price forecasts are highly uncertain and has 
described the uncertainty by identifying the market factors that may significantly move 
prices away from their expected paths, such as economic growth, Organization of 
Petroleum Exporting Countries (OPEC) behavior, geo-political events, and hurricanes.  
However, these descriptions do not provide a quantitative measure of the range of 
uncertainty regarding an expected future price.  Nor do they indicate whether the 
uncertainty has increased or decreased since the last forecast was published.  
 
Beginning with the October 2009 issue, the STEO will publish confidence intervals for 
crude oil and natural gas futures prices.  A confidence interval is a range of prices 
between a low and a high price, i.e., the confidence limits.  The range of the confidence 
interval is determined by the confidence level.  The confidence level represents the 
probability that the final market price for a particular futures contract, e.g., December 
2010 crude oil, will fall somewhere within the lower and upper range of prices.  For 
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example, if a confidence level of 95 percent is specified, then a range of prices can be 
estimated for any future month within which there is a 95-percent probability the price of 
the commodity in the expired contract’s delivery month will fall within that range.  The 
higher the specified confidence level, the wider the range between the lower and upper 
confidence limits. 
 
Confidence intervals for expected prices can be calculated using a variety of alternative 
techniques, including estimates based on past price volatility, statistical analysis of past 
forecast errors, or estimates of parameter uncertainty in an econometric energy price 
forecasting equation.  Such backward-looking approaches, notwithstanding their merits, 
cannot reflect changes in current market conditions and expectations that may lead to 
greater or lesser uncertainty about the future at any given time. 
 
The STEO will instead focus on a measure of uncertainty derived from the New York 
Mercantile Exchange (NYMEX) light sweet crude oil options and natural gas options 
markets.  EIA will derive confidence intervals around expected futures prices using the 
“implied volatilities” of these options.  Implied volatility is nothing more than a standard 
deviation for expected returns embedded in the option’s price.  If an option’s price is 
observed in the market, then a pricing model can be “run backwards” to calculate the 
volatility embedded in that price.  This represents a market-cleared estimate of implied 
volatility, i.e., a buyer and seller have agreed on the value of an option.  The advantage of 
this method is that it produces an assessment of future price uncertainty based directly on 
current market data and highly informed market participants’ expectations.  This 
approach is used by the U.S. Federal Reserve Board and the Bank of England to assess 
market uncertainty.  Commercial banks also use implied volatilities to derive probability 
estimates that market participants assign to different price outcomes.  As an estimate of 
risk, the use of implied volatility is well accepted in the financial literature.1  
 
Based on our review of the relevant empirical literature, as summarized in the latter 
sections of this report, EIA has determined that implied volatilities currently provide the 
most useful estimate of the market’s expectation for the range in which prices likely will 
trade.  Therefore, EIA will use this method to generate its confidence intervals around the 
NYMEX futures prices.  
 
The markets represented by the NYMEX light, sweet crude oil and natural gas futures 
prices are directly related to the markets represented by the STEO West Texas 
Intermediate (WTI) crude oil and Henry Hub natural gas spot-price forecasts.  However, 
while the NYMEX and STEO prices are expected values for physical commodities 
delivered to equivalent physical markets, and they generally are close, they are not 
identical.  The NYMEX price is a firm price at which delivery is made in the month 
specified in the futures contract.  The terminal NYMEX price at which all outstanding 
futures contracts go to physical delivery is determined on the last day of trading for a 
particular futures contract.  Typically, this termination occurs in the calendar month 
preceding the delivery month (e.g., the terminal futures price for December 2010 WTI 
delivered to Cushing, OK, is determined on the last day of trading for that contract: 
November 19, 2010.)  The STEO forecasts are average daily spot prices expected in the 

http://www.nymex.com/index.aspx


Energy Information Administration/Short-Term Energy Outlook Supplement — October 2009 

3 
 

actual delivery month (e.g., during December 2010).  These daily prices are reported by 
industry publications on a daily day-ahead basis during the delivery month (e.g., the 
average natural gas price for Henry Hub, LA, for next-day delivery during the month of 
December 2010).  While both forecasts reflect delivered prices for the same commodity 
at the same location, they are measuring expected prices over different pricing intervals.  
 
Because the implied volatilities and confidence intervals derived from the NYMEX 
options markets are derived from prices on the NYMEX futures and options markets, the 
confidence intervals are presented in relation to the NYMEX futures prices and not the 
STEO forecast price.    
 
As shown in Figure 1, the implied volatility from options can imply a wide range of 
future price uncertainty.  For example, as of July 27, 2009, the 95-percent confidence 
interval for the January 2010 WTI futures price ranged from $42 to $124 per barrel.  At a 
lower confidence level, the price band narrows, but even a 68-percent confidence interval 
ranges from $55 to $95 per barrel.  Moreover, confidence intervals typically widen as the 
length of the forecast horizon grows.  By July 2010, the 95-percent confidence interval 
for the WTI price ranges from $38 to $152 per barrel.   
 
In Figure 2, the 95-percent confidence interval for the January 2010 NYMEX Henry Hub 
natural gas futures ranges from $2.93 and $10.69 per million Btu (MMBtu).  The 68-
percent confidence interval ranges from $4.03 to $7.78 per MMBtu.   By July 2010, the 
95-percent confidence interval for the natural gas futures price ranges from $2.60 to 
$13.00 per MMBtu.    
 

Figure 1. NYMEX WTI oil futures price 
with two confidence intervals
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Figure 2.  NYMEX natural gas futures price 
with two confidence intervals 
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The 95-percent confidence intervals for future oil and natural gas prices derived from 
market data are quite wide, reflecting market participants’ view that prices can change 
rapidly and cover a wide range in a short time interval.  Additionally, realized prices at a 
future date can, and often do, diverge significantly from prices at which futures contracts 
for that delivery date are traded at earlier points in time.  EIA believes that such 
confidence intervals provide important insight into the uncertainty inherent in price 
projections developed by EIA and other forecasting organizations, and provide a useful 
context for evaluating forecast performance.       
 
Section 1 of this paper provides a general background on commodity futures and options 
markets, paying particular attention to the energy futures and options markets operated by 
the NYMEX.  Section 2 describes institutional features of these markets necessary to 
understand the processes, procedures, and rules under which futures and options are 
traded.  Section 3 lays out how market participants offset their risks or take on exposures 
via the trading process itself.  Next, Section 4 examines the history of the analysis of 
randomness, focusing in particular on random price behavior, which is necessary for an 
understanding of the models employed to quantify the market’s risk assessments.  Section 
5 shows how EIA and other analysts calculate confidence intervals for energy commodity 
prices, and then, Section 6 documents the parameters used to construct these measures.  
Section 7 summarizes daily procedures EIA will use to map confidence intervals for 
NYMEX energy futures.  And, lastly, Section 8 outlines areas for future EIA research 
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regarding confidence-interval estimation using market-derived parameters of expected 
price distributions. 
 
1. Background on Commodity Futures and Options Markets 
 
Futures and options markets evolved to manage the risks associated with commodity-
price volatility. The earliest recorded instance of a formal futures market occurs in 1730 
with the Dojima Rice Exchange in Osaka, Japan (Matao, 1999).  These markets provide 
producers, consumers, merchants, and speculators a risk-transfer mechanism in the form 
of contracts for the future delivery of a physical commodity.  Via the trading process, 
futures markets continually process information from these agents, and reflect it back as a 
price at which supply and demand clears the market. 
  
The deepest, most liquid global markets for oil futures and options are the NYMEX light, 
sweet crude oil markets.  These markets comprise what is known colloquially in the oil 
industry as the WTI market.  Trading in WTI futures began on March 30, 1983, at 
NYMEX.  Options on WTI futures began trading November 14, 1986.  The NYMEX 
futures call for physical delivery of WTI in Cushing, Oklahoma.  WTI is the benchmark 
crude oil for the Americas, meaning most spot-, forward- and over-the-counter-market 
transactions are priced on the basis of WTI prices discovered as a result of NYMEX 
trading.   
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Futures and options volume 

 
 
The WTI futures are the most actively traded physical commodity futures in the world.  
Figure 3 shows that trading in NYMEX WTI futures during 2008 averaged more than 
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500,000 contracts per day, which is equivalent to 500 million barrels of oil (each contract 
is for 1,000 barrels).  NYMEX options trading volume approached almost 140,000 
contracts per day in 2008.  Average daily NYMEX WTI futures volume in the January-
through-June 2009 period was 528,496 contracts.  Options on WTI futures averaged 
97,956 contracts per day over the same period. 
 
NYMEX natural gas futures also are physical-delivery contracts, specifying delivery of 
10,000 MMBtu of pipeline-quality natural gas per contract to the Henry Hub, Louisiana, 
pipeline system.  Natural gas futures began trading on NYMEX April 3, 1990.  Options 
on NYMEX natural gas futures began trading November 2, 1992.  The NYMEX natural 
gas futures contract is the benchmark for North American physical hub trading.  
Contracts in the United States and Canada are traded on a “basis,” or price differential, to 
NYMEX futures, with the basis depending on the location of a particular hub or trading 
location.   
 

Figure 4. NYMEX natural gas (Henry Hub) 
Futures and options volume
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In 2008 and the first half of 2009, trading in NYMEX natural gas futures averaged more 
than 151,000 contracts per day (Figure 4).  NYMEX natural gas options trading volume 
averaged more than 6,500 contracts per day in 2008 and the first half of 2009, according 
to the CME Group, parent company of the NYMEX.  In the January-through-June 2009 
period, an average 149,781 NYMEX natural gas futures contracts traded, while an 
average 3,833 options that exercise into the underlying futures contract traded daily.  The 
deeper NYMEX financially settled natural gas options, launched August 15, 2005, traded 
an average 110,365 contracts per day for the first six months of 2009 – almost 30 times 
the daily volume of the option settling into a futures contract.2  The financially settled 
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options’ terminal values are calculated using the underlying futures price settlement for 
the business day prior to the futures final settlement date (i.e., penultimate settle).3 
 
2. Institutional Features of Futures and Options Markets 
 
The futures and options markets operated by the NYMEX are the most transparent and 
accessible of the major trading venues for crude oil in the world.  Other markets, i.e., the 
over-the-counter financial markets, the spot and forward physical markets, while active, 
do not have the high visibility of the exchange-traded futures and options contracts.4

  
U.S. futures exchanges like the NYMEX are self-regulatory organizations (SROs), 
subject to Federal oversight by the Commodity Futures Trading Commission (CFTC). 
Trading can be conducted via open-outcry on a trading floor at the exchange (wherein 
buyers and sellers literally shout the prices at which they are willing to trade), or 
electronically on platforms operated by the exchange. 
 
Commodity futures traded on the NYMEX are binding legal obligations to make or take 
delivery of a specific physical commodity at a particular date in the future.  Every 
element of the deliverable commodity is specified in the contract: grade and quality (e.g., 
light, sweet crude oil or pipeline-quality natural gas); volume (1,000 barrels per contract 
for WTI; 10,000 MMBtu per contract for natural gas); timing and mode of delivery (via 
pipeline during the delivery month); delivery location (Cushing, OK, or Henry Hub, LA); 
force majeure events; pricing conventions (dollars and cents per barrel or per MMBtu); 
and other terms and conditions specified by the Exchange.  As the delivery month 
approaches, the futures price and the spot-market price of the commodity converge.  This 
is due to arbitrage between the physical and financial markets.  If futures prices are above 
spot prices, market participants with access to physical supplies will buy oil to deliver 
against the futures obligation, thus raising spot prices relative to futures, and vice versa.5

 
All contract terms are standardized except the price at which delivery occurs.  Price is 
determined via trading.  After a deal is consummated, the exchange clearinghouse steps 
in to become seller to all buyers and buyer to all sellers.  Since the exchange is now a 
party to the transaction, the clearinghouse requires collateral in the form of a performance 
bond on every open contract.  Failure to maintain this collateral results in liquidation of 
the position. 
  
Futures are “marked to market” daily, meaning the price of outstanding contracts at the 
close of today’s trading session is compared to the previous session’s close.  Gains and 
losses are allocated by the clearinghouse among buyers and sellers, so that all collateral 
accounts for open positions have been credited or debited appropriately based on changes 
in position values that day.  At the start of the next trading session, all gains and losses 
will have been realized from the previous day, and a new trading session will begin.  This 
process will be repeated until positions are either liquidated (i.e., traded out of), the 
contracts go to delivery, or are financially settled. 
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Futures options also are legally binding contracts conferring the right, but not the 
obligation, to buy or sell a futures contract.  The right to buy a futures contract is known 
as a “call option.”  The right to sell the underlying futures contract is known as a “put 
option.”  Because these contracts confer rights, not obligations, they are known as 
“contingent claims.”  The option buyer, also known as the “holder” of the contract, does 
not have to exercise his right to buy or sell the underlying futures contract if doing so 
causes him to incur a loss.  Option sellers, on the other hand, known as “grantors,” must 
stand ready to perform if the option they’ve sold is exercised by the holder.  On the 
NYMEX, “American-style” options are traded, which allow holders to exercise any time 
prior to expiry; other types of options are “European-style,” which permit exercise only at 
expiry, and “Asian-style” options, which reference an average price as the underlying 
variable against which the option settles. 
 
Like futures, options contracts are completely specified by the exchange, including: 

 the underlying contractual obligation that is to be delivered in the event of 
exercise, e.g., a specific futures contract such as December 2015 crude oil or 
natural gas futures contracts; 

 the price at which a buyer can exercise the option into the underlying future, also 
known as a “strike price”; 

 the expiration date of the option, the “expiry”; and  
 the deadline by which a buyer must convey intent to exercise to the 

clearinghouse.6 
 
The only term not defined in the contract is the price of the option, known as the 
“premium,” which is discovered via the trading process. 
 
3. The “Long” and “Short” of Futures and Options Markets 
 
Trading in futures and options markets occurs between exchange members.  The public 
trades anonymously through member-brokers on the exchange’s platforms.  Market 
participants, hedgers or speculators, seeking to get “long,” i.e., benefit from prices going 
up, can: 
  

1. Buy a call.  In return for paying the option premium, the buyer has the right to 
exercise into a “long” position, i.e., the option holder buys futures, in the 
underlying futures contract if its price exceeds the strike price of the call option, 
i.e., the call is “in the money”.  The maximum loss an option buyer faces is the 
premium paid for the call.  If the option is “out of the money,” i.e., futures prices 
are less than the strike price, on the expiration date the option is abandoned, and 
the premium is forgone. 

 
2. Buy a futures contract.  If the contract’s price goes up, the position gains penny 

for penny with each tick above the price level at which the contract was 
purchased; if prices go down the position will lose penny for penny. 
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3. Sell a put.  In return for granting the option, the put seller receives a premium.  
This is the maximum gain an option seller can realize.  Upon exercise, the put 
seller is made long a futures contract by the clearinghouse if prices settle below 
the option’s strike, i.e., if the put is in the money. 

  
Those seeking to get “short,” i.e., benefit from prices going down, can: 
 

1. Buy a put.  The put holder has the right to exercise into the underlying futures 
contract if prices fall below the strike price of the option, i.e., the put is “in the 
money”.  The premium paid for the option is the maximum loss the buyer can 
incur.  If the futures price is above the strike, the put expires out of the money. 

 
2. Sell a futures contract.  If the contract’s price goes down, the position gains 

penny for penny with each tick below the level at which the contract was sold; if 
prices go up, the position will lose one-for-one. 

 
3. Sell a call.  Again, the maximum gain to the grantor from selling an option is the 

premium.  The call seller will be made short a futures contract upon exercise at 
the call’s strike price, if the contract-month price settles above the strike price of 
the option granted. 

 
4. The Behavior of Futures and Options Prices 
 

“We would expect people in the market place, in pursuit of avid and intelligent 
self-interest, to take account of those elements of future events that in a 
probability sense may be discerned to be casting their shadows before them.  
(Because past events cast their shadows after them, future events can be said to 
cast their shadows before them.)”  Samuelson (1965, p. 44). 

 
Commodity prices are volatile.  Unexpected changes in weather, political regimes, global 
economic shocks, and countless other factors impact energy markets on a continual basis.  
News of such events arrives randomly to market participants—sometimes to all, 
sometimes to a few—and when it does, it causes current assessments of future prices and 
the range in which prices will trade to change.  Sometimes the “news” correctly reflects a 
change in supply or demand, or both; sometimes it does not. 
 
Understanding the random behavior of prices, commodity and otherwise, has occupied 
some of the greatest minds of the 20th century, beginning with Louis Bachelier, whose 
theorie de la speculation, published in 1900, ignited a revolution in the study of 
randomness in science and finance and marked the beginning of the study of Brownian-
motion processes (Courtault, et al, 2000).7  
 
In the 1930s and 1940s, Holbrook Working (1962) suggested an efficient-markets 
hypothesis by asserting that volatility in prices indicated futures markets were adjusting 
exactly as they should to the arrival of new information.  “Pure random walk in a futures 
price is the price behavior that would result from perfect functioning of a futures market, 
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the perfect futures market being defined as one in which the market price would 
constitute at all times the best estimate that could be made, from currently available 
information, of what the price would be at the delivery date of the futures contracts.”8 
Nobel laureate Paul Samuelson (1965) formally demonstrated this proposition.9 
 
The high-water mark of these investigations into risk and randomness in financial 
markets occurred in 1973 with the publication of two papers by Fischer Black, Myron 
Scholes (1973), and Robert Merton (1973), which presented a closed-form model for the 
valuation of stock options.10  The Black-Scholes-Merton (B-S-M) model, as it’s come to 
be known, was extended to commodities by Black (1976).  
 

In Black’s model, an option’s value, i.e., its “premium,” is determined by: 
 the volatility of the underlying asset’s price; 
 its strike price; 
 the price of the underlying asset itself, not its return; 
 the risk-free interest rate; and 
 the time to expiration of the option. 

 
A call’s value increases if the underlying futures price increases, volatility increases, or 
time to expiration increases, all else being equal.  A call loses value if interest rates 
increase or if the strike price is increased, all else being equal.  A put’s value increases if 
futures prices decrease, volatility increases, or time to expiration increases, all else being 
equal.  A put loses value if interest rates increase or futures prices increase, all else being 
equal, again.11 
 
A particular type of random walk is assumed in the B-S-M and Black models, known as a 
geometric Wiener process.12  In such a process, the likelihood of a 1-percent upward 
move in an asset’s  price is equal to the likelihood of a 1-percent downward move over a 
very small time increment.  The most an asset can lose is 100% of its value (i.e., the price 
distribution is bounded at zero).  This means returns would be normally distributed, with 
constant volatility, while absolute prices would be log-normally distributed at the 
option’s expiry.13   
  
The impact of these models on market functioning is significant.  Stephen Figlewski 
(1989) notes, “Among all theories in finance, the Black-Scholes option pricing model has 
perhaps had the biggest impact on the real world of securities trading.  Virtually all 
market participants are aware of the model and use it in their decision making.  
Academics regularly test the model’s valuation on actual market prices and typically 
conclude that, while not every feature is accounted for, the model works very well in 
explaining observed option prices.”  This also is the case in the commodity option 
markets, particularly in the oil markets.  Most commodity option models start with the 
Black model and build or modify from there.14    
 
In Black’s model, commodity futures prices are assumed to be log-normally distributed, 
so log returns are assumed to be normally distributed.15 This can be represented in 
equation (1) below, in which the continuously compounded rate of return over some 
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small period of time is equal to the average rate of return plus a stochastic term.  In other 
words, commodity returns follow a random walk, which is assumed to be zero-drift, plus 
a random “shock” component.16 
 

(1)   dtzdtf/f kkk,tk),dtt(  ln , where 

 
ln   = Napierian logarithm, or natural logarithm 

 

ktf ,  = observed futures price at time = t  for the kth-nearby contract 

 

kdttf ),(   = futures price at dtt   for the kth-nearby contract ( dt > 0) 

 

k = mean logarithmic return  

 
dt = infinitesimal change in time (∆t, as ∆t → 0) 

 
dtk = the “drift” term 

 

k  = standard deviation of the kth-nearby contract’s returns 

 
z = standard normal random variable with mean = 0, var = 1 

 

dtzk random-shock17 

 
This diffusion process can be used to derive Black’s commodity option pricing model 
under the risk-neutrality argument, as Yoshiki Ogawa (1988) demonstrates.  Given these 
assumptions, we can derive the expected value of a futures price and then specify a 
confidence interval around this expected value, as is done below. 
 
5. Methodology for Calculating Confidence Intervals 
 
The expected values of the log returns and the futures price are shown in Appendix I to 
be: 
 
(2)        k,tk,k,tk, f/dff/fln EE , and  

 
(3)      E expff k,tk,  , where  

 
(4)     ,  22  /kk  with  

 
  = time to expiry (as a percent of a 252-day trading year). 
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In the standard formulation of the confidence interval (CI) for the returns, the expected 
value  is set to zero, consistent with the martingale assumption for futures,18 so 
 
(5)           22 /kk  , and 

 
the confidence interval19 around the expected value of the returns would be given by   
 

(6)             1 2 2Prob 2
2

k2
2

k/kk/k *z/*z/ , where 

 
1 confidence coefficient, or the degree of confidence; e.g., when  =0.05, 

the degree of confidence is 95 percent,20 and 
 

2/z = Standardized normal value for   level of confidence. 

 
This is a confidence interval for the normally distributed percent returns of the futures 
price.  The mean and variance fully describe the expected distribution of returns.   
 
In price terms, the confidence interval would be: 
 

(7)         k/kk,tk, *z/exp*ff 2
2  2 E   for the lower limit,  

 
and 
 

(8)         k/kk,tk, *z/exp*ff 2
2  2 E   for the upper limit. 

 
This is the standard confidence interval formulation for a lognormally distributed random 
variable.  However, in the case of upper limit for the CI, this formulation produces 
inconsistent results for small confidence levels and for narrow CIs over longer time 
intervals, i.e., the upper limit of the CI could be less than the forward price anchoring the 
interval in such instances, depending on the confidence level specified.   
 
A formulation for a confidence interval in which the upper limit is less than the forward 
curve used to compute the limit severely restricts the explanatory power regarding the 
range of price uncertainty.  Therefore, we impose a correction equal to    22 /k on either 
side of the confidence-interval calculation, which forces the upper confidence limit to 
converge on the forward price for small and narrow CI specifications, as the negative 
sigma-squared term’s effect is negated.  Thus the CI takes the form (for price): 

 

(9)          k/k,tk, *zexp*ff 2 E   for the lower limit,  

 
and 
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(10)         k/k,tk, *zexp*ff 2 E   for the upper limit. 

 
This is consistent with similar imposed corrections in the literature.21  
 
The intuition of this confidence interval is consistent with the assumption of the 
geometric Wiener process.  The expected futures price is dependent on a zero-drift term 
and a random-shock term.  Per the assumptions and model, the only source of variation in 
the futures price between the time a price is observed and the as-yet-to-be-realized price 
at the expiry of the associated options contract are the random shocks resulting from the 
arrival of new information in the market.  Thus, the zero-drift process is maintained while 
the futures price traverses a path consistent with the stochastic term, i.e., dtz* , in this 
model. 
 
6. Which   to Use: Implied or Historical Volatility? 
 
The above methodology for determining the confidence interval for the energy futures 
price requires an appropriate measure of variance for the price distribution. 
 
The k  input to the Black pricing equation can be estimated in a variety of ways using 

historical futures price realizations.  Typically, the historical volatility for the kth-nearby 
futures contract ( h

k̂ ) is computed using the maximum-likelihood estimator and daily 

historical futures price relatives: 
 

  h
k     *1-1/n

2

1  n
i kk,i ]RR[  

 
Ri,k = daily price relative =  k,tk,t f/fln 1 , with i = t, t-1, …, t-n  

Here, “n” is the number of days used to construct the historical volatility estimate, 
e.g., for 20 price observations, n = 20, we have 19 daily returns in the volatility 
estimate beginning with today’s price relative at time t  through to the price 
relative at time 19t  days ago. 
 

kR  = nR
n

i ki /][
1 ,

 = calculated average return of daily price relatives of the kth 

nearby contract. 
 
Alternatively, an historical volatility also can be estimated via econometric methods, such 
as autoregressive conditional heteroskedasticity (ARCH)-based models and regime-
switching models, as was done by Duffie and Gray (1995).22 
 
An entirely different tack can be taken by inverting the Black option pricing model.23  All 
of the pricing inputs required to run Black’s model are readily observable, with the 
exception of the volatility, i.e., the standard deviation of returns, or “ k ”, of  the kth 

futures contract.  Consequently, given the underlying futures price, the strike price, 
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interest rates, and time to expiry, the volatility for options written on the kth-nearby 
futures contract that equates the Black model with the cleared option premium that trades 
in the market can be solved for by running Black’s model “backwards.”  This is known as 

the market-based “Black implied volatility,”24 denoted i
k .   

 
The Black implied volatility turns out to be a better estimate of realized volatility for 
commodities than the various historical volatilities, based on empirical tests of the 
markets.  The implied volatility, also referred to as “the implied” by market participants, 
is a forward-looking estimate of the expected volatility for prices derived from the 
market-clearing process.  Like the futures price, the implied is a cleared market-based 
parameter of an expected distribution.  Hence, in terms of describing the range in which 
futures prices have the highest likelihood of trading, the implieds are expected to be more 
accurate than any of the historical measures of volatility. 
 
Stein (1989) summarizes options-based estimates of volatility thusly: “Options can be 
thought of as reflecting a speculative market in volatility – the implied volatility on a 
given option (obtained by inverting a Black-Scholes-type formula) should equal the 
average volatility that is expected to prevail over the life of that option.” 
 
In an empirical analysis of crude oil, heating oil and natural gas trading markets, Duffie 
and Gray (1995) found that “Black-Scholes option-implied volatility, when available, 
provides a more reliable forecast of future volatility than either historical volatility, or 
than can be obtained from the standard Markovian models of volatility that we have 
examined; the latter included simple regime-switching models and ARCH-based models 
such as GARCH, EGARCH and multi-variate GARCH.”25 
 
Szakmary, Ors, Kim and Davidson (2003) assessed implied versus historical volatility 
and GARCH-based estimates in their analysis of 35 futures markets.  Included in their 
study were crude oil, heating oil, gasoline, and natural gas futures.  In particular, they 
find the implied volatilities of the energy options to be among the best predictors of 
realized volatility in the futures contracts they studied.   
 
As a practical matter, financial markets in which futures and options trade collect the 
most current information on supply, demand and expectations vis-à-vis the future 
available.  Bernanke (2004b) notes: “To assess recent developments in the oil market, it 
would be useful to know whether the high price of oil we observe today is a temporary 
spike or is instead the beginning of an era of higher prices. Although no one can know for 
sure how oil prices will evolve, financial markets are one useful place to learn about 
informed opinion. Contracts for future deliveries of oil, as for many other commodities, 
are traded continuously on an active market by people who have every incentive to 
monitor the energy situation quite closely. Derivative financial instruments, such as 
options to buy or sell oil at some future date, are also actively traded. The prices observed 
in these markets can be used to obtain useful information about what traders expect for 
the future course of oil prices, as well as the degree of uncertainty they feel in predicting 
the future.” 
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These findings are consistent with other studies surveyed by Poon (2005), who notes, 
“the volatility forecasting contests show overwhelmingly that option implied volatility 
has superior forecasting capability, outperforming many historical price volatility models 
and matching the performance of forecasts generated from time series models that use a 
large amount of high-frequency data.”  A similar point was made by Engle (2002), citing 
research by Poon: “Do GARCH models out-forecast implied volatility models?  The 
answer is complex depending upon the statistical approach to forecast evaluation, but 
generally it is found that implied volatilities are more accurate forecasts of future 
volatility than are GARCH models.”26 
 
Szakmary, et al, (2003) state, “Our findings … are consistent with the weak-form 
efficiency of futures options markets, in that the volatility information embedded in 
current option prices is a better predictor of future volatility than historical measures of 
volatility, regardless of how the latter are modeled.”27 They suggest institutional and 
structural effects, e.g., commodity options and futures typically trade in the same venue 
and have lower transactions costs versus equities and their associated options, partly 
explain these results.   
 
Any test of a market’s efficiency using a model is a joint test of the model used and the 
market’s efficiency, as noted by Jorion (1995), Dimson and Mussavian (1998), Szakmary 
et al (2003) and Poon (2005).28 Essentially, market participants trading the options are 
assumed to behave as if the model reflects reality, and the market is assumed to behave in 
a manner that would be consistent with the underlying assumptions of the model. 
  
Additionally, implied volatility can be treated as a sufficient statistic and used to derive a 
confidence interval around the mean of the returns distribution.  Because the returns are 
assumed to be normally distributed, their expected mean and variance fully characterize 
the expected distribution.29  
 
7. Procedure Observed for Mapping NYMEX Futures Confidence Intervals 
 
Using standard normal probability distribution tables found in most statistics textbooks, a 
price range, e.g., a 95-percent confidence interval, or multiple confidence intervals can be 
described. 
 
The individual parameters used in mapping confidence intervals for WTI and Henry Hub 
natural gas futures are simple five-day averages computed from NYMEX settlement 
prices and the NYMEX at- and near-the-money implied volatilities published nightly by 
the Exchange.30  These data are used by the Exchange to calculate margins for futures 
and options portfolios using the Exchange’s Standard Portfolio Analysis of Risk 
(SPAN).31  Averaging these observations reduces the likelihood a single observation will 
be overweighted by a large trade, or, at the other extreme, the likelihood a single day’s 
trading is too sparse to produce prices with significant economic information.  This 
averaging is a procedure referenced elsewhere in the literature.32 
 
The graphical output produced using these procedures (Figure 1 and 2) shows 
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 The current STEO forecast 
 The current NYMEX forward curve. 
 The 68-percent (one standard-deviation) CI, and a 95-percent CI around the 

NYMEX forward curve are specific to each contract month, as the calculation 
relies on each contract month’s futures price and implied volatility to form CIs. 

 
The EIA confidence-interval model for energy futures deliberately chooses at- or near-
the-money options to calculate the variance parameter, given the well-known “volatility 
smile” effects documented in numerous options markets – i.e., the tendency for deep-out- 
and deep-in-the-money options to have volatilities different from the at- and near-the-
money options.  This is done for two reasons: 1) The at- and near-the-money options 
typically are the most liquid options traded; and, 2) they are most sensitive to changes in 
information affecting the estimation of volatility.   
 
Over the decades during which this phenomenon has been studied, sophisticated models 
designed to extract market participants’ expectations from the “smile” have been 
developed to provide policy-makers real-time assessments of market uncertainty and the 
affects their innovations have on asset values, as Clews et al (2000), Melick and Thomas 
(1992), Jackwerth (2004), Bernanke (2004a), and Figlewski (2008) note.33  There are 
numerous avenues for further research along these lines and elsewhere for energy 
markets, as we note below. 
 

8. Areas for Future Research 
 
The use of implied volatility as the best predictor of future realized volatility still is a 
source of debate.  In addition, as one reviewer of this article noted, many of the academic 
studies cited herein were done for markets other than crude oil and natural gas futures.  
Results of any econometric test will be a function of the underlying financial variables 
and the time period covered in the tests.  Therefore, results for energy markets will 
produce valid results for the time period studied.  The reviewer also noted that futures 
have not been conclusively demonstrated to be superior predictors of realized future 
commodity values. Some studies indicate they are biased predictors of realized values.  

Another reviewer noted the model assumed for EIA confidence intervals—geometric 
Brownian motion— does not explain the extraordinarily sharp price movements seen 
during the 2008-09 period, when WTI futures traded to more than $145/bbl and months 
later fell below $40/bbl, only to trade back up to around $70/bbl by mid-2009.  He 
suggested testing for lognormality in prices to assess deviations from this assumption.  In 
addition, he too questioned whether the lognormal price assumption underestimates the 
likelihood of extreme price realizations going forward (i.e., extreme outcomes are more 
likely than are implied by the distribution assumed after the Black (1976) model is 
inverted to recover the variance estimate). 

The EIA model uses implied volatilities published by NYMEX, which, as mentioned 
above, inverts Black’s model (i.e., a European-style option model) to calculate implied 
volatilities.  This means the volatility parameter of the expected price distributions for 
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WTI crude oil and natural gas futures is based on the Black model’s assumption the 
options can only be exercised at expiry.  For natural gas, this is wholly consistent with the 
Exchange’s methodology, since it inverts a Black model to solve for the volatility of its 
financially settled natural gas options, which are European-style options.  Crude oil 
options, however, are American-style options, thus inverting a Black model to solve for 
implied volatility may underestimate volatility.  As part of EIA’s ongoing benchmarking 
of its model, we will test whether the volatility from an American-style model is 
significantly different from the European model inverted by NYMEX to solve for 
volatility.  Two reviewers noted, the EIA model uses “the prices of American-style 
options, but their model is for European-style options.  We did a quick comparison of the 
current prices of American and European-style options on WTI futures and found that the 
value of early exercise has little to no value. …”34   
 
EIA will be conducting ongoing tests to benchmark its volatility model and its 
assumptions, as well as examining recently developed risk-neutral-density techniques to 
see if they offer better forecasts of realized volatility than the simple implied-volatility 
model using at- and near-the-money options presented herein.  Lastly, EIA will be back-
testing this model vis-à-vis confidence intervals developed using historical data and then 
checking to see if the model contain the realized prices predicted by this specification.  
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Appendix I: Derivation of the Confidence Interval for Futures Prices 
 
To derive the confidence intervals for futures prices under the assumptions of the Black 
(1976) and Cox-Ross-Rubenstein (1979) models, we begin with  
 

(1)   dtzdtf/f kkk,tk),dtt(  ln , with notation as before in Section 4. 

 
First following Ogawa (1988) and Jarrow and Rudd (1983),35 both sides of (1) are 
exponentiated, so 
 

(2)  dtzdtexpf/f kkk,tk),dtt(    

 
This expression can be used to derive the expected value of the percent returns.  Using 
Maclaurin’s expansion for equation (2) gives 
 

ktkdtt ff ,),( /  =       ...  !3/  !2/1
32





 



  dtzdtdtzdtdtzdt kkkkkk   

 
Let k,tk,tk),dtt( dfff  , therefore, re-arranging, 

 

kdttf ),(   = ktkt dff ,,  , and dividing both sides by ktf , , gives 

 
  ktktktktkdtt fdffff ,,,,),( //  , so 

 

      ...  !3/  !2/1/1
32

,, 



 



  dtzdtdtzdtdtzdtfdf kkkkkkktkt     

 
Thus,  
 

      ...  !3/
3

  !2/
2

/ ,, 



 



  dtzkdtkdtzkdtkdtzkdtkfdf ktkt   

 
Ignoring terms with order of dt > 1, since they get infinitesimally smaller as the order of 
dt increases, yields 
 

(3)     dtzdtz/f/df kkkk,tk,t     2 22   

 
Taking the expectation of (3) gives 
 

(4)     ...dt/f/df kkk,tk,t   2E 2 , as   ,z 0E  and   12 zE  
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For expositional convenience, this is treated as an equality.  Formula (4) is the expected 
value of the percent returns.  In Black’s (1976) formulation, the return to a futures 
contract is zero.  In section 2 of his paper, Black concludes: “For these commodities, 
neither those with long futures positions nor those with short futures positions have 
significantly positive expected dollar returns.”  This is consistent with Samuelson’s proof 
(1965) and Ogawa’s (1988) derivation, and recently was demonstrated by Hamilton 
(2009).36  This is used to define a confidence interval for the return to holding a futures 
contract.   
 
Let     22 /kk , so (4) becomes 

 
(5)   dtf/df k,tk,t E  

 
Jarrow and Rudd (1983) show the variance and standard deviations of the returns – i.e., 

ktkt fdf ,, /  – are  

 
(6)   ,dtf/df kk,tk,t

2Var   therefore 

 

(7)   dtf/df kk,tk,t StDev   

 
We also can derive an expression for the expected value of the futures price from the log-
normal diffusion above.  Taking the expectation in (2) above, gives 
 
    dtzdtexpf/f kkk,tk),dtt(   EE  

 
       dtzσexp*dtμexpf/f kkk,tk),dtt(   EE     

 

The second expression on the right-hand side in the exponent above, i.e.,  dtzkexp ,  

is the moment-generating function for a normal random variable.37  Collecting terms 
yields: 
 
       dt/exp*dtexpf/f kkk,tk),dtt(  2E 2 , so  

 
    dt/expff kkk,tk),dtt(  2E 2  , and, recalling     22 /kk , this becomes 

 
(8)    dtexpff k,tk),dtt( E  

 
Here it is seen that the expected futures price can be expressed as the current observed 
futures price times the expected return to holding the futures contract over an arbitrarily 
small time interval.  The mean and variance of the price-relative scale proportionately 
with time in the geometric Wiener process assumed for futures prices,38 thus: 
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dtk   k , and 

 
dtk

2     2
k , so 

 

dtk     k  

 
Here,   = time to expiration (as a percent of a year) in the kth-nearby option contract.   
 
Given the mean and variance are linear in time, the following relationships hold: 
 
(5*)        k,tk,k,tk, f/dff/fln EE , and  

 
(8*)      E expff k,tk,   

 
The equation numerals above are starred (*) to indicate these expressions are scaled-by-
the-time-to-expiration versions of the original equations bearing those numerals. 
 
In the standard formulation of the confidence interval for the returns, the expected value 
is  

 
(9)                22   /kk  

 
As shown above.  Setting 0 above, per Ogawa (1988, p. 55) to be consistent with the 
martingale assumption, we see 

 
(10)           22 /kk   

 
and the confidence interval would be specified as 
 

(11)             1 2 2Prob 2
2

k2
2

k/kk/k *z/*z/ ,  

 
which, in price terms, would be: 
 

(12)         k/kk,tk, *z/exp*ff 2
2  2 E   for the lower limit,  

 
and 
 

(13)         k/kk,tk, *z/exp*ff 2
2  2 E   for the upper limit. 

 
This is the standard CI formulation.  However, in the case of upper limit for for the CI, 
this formulation produces inconsistent results for small confidence levels and for narrow 
CIs over longer time intervals, i.e., the upper limit of the CI could be less than the 
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forward price anchoring the interval in such instances, depending on the confidence level 
specified.   
 
A formulation for a CI in which the upper limit is less than the forward curve used to 
compute the limit severely restricts the explanatory power regarding the range of price 
uncertainty.  Therefore, we impose a correction equal to    22 /k on either side of the 
confidence-interval calculation, which forces the upper confidence limit to converge on 
the forward price for small and narrow CI specifications, as the negative sigma-squared 
term’s effect is negated.  Thus the CI takes the form (for price): 

 

(14)     k/k,tk, *zexp*ff 2 E   for the lower limit,  

 
and 

 

(15)     k/k,tk, *zexp*ff 2 E   for the upper limit. 

 
This is consistent with similar imposed corrections in the literature – see, e.g., Newell and 
Pizer (2003, p. 64). 
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Appendix II: Derivation of the Cumulative Normal Density for Futures Prices 
 
In this appendix, the cumulative normal density function for commodity prices is derived, 
consistent with the Black commodity option pricing model.39 
 
In Section 5 and Appendix I above, the confidence interval for expected futures prices 
was obtained, given an implied volatility.  In this appendix, that derivation is expanded to 
show how the cumulative normal density function for commodity prices is derived within 
the Cox-Ross-Rubinstein (1979) risk-neutral framework. 
 
In a risk-neutral economy, where utility preferences are linear, a hedge position can be 
constructed that earns the risk-free rate of return, and we can solve for the expected value 
of a call option. 
 
The derivation for the value of a call option proceeds by solving for the net present value 
of the option on the kth nearby future at the call’s expiration date at time =  .  As before, 
the time to expiration of the kth-nearby future = k  = time to expiry as a percent of a year, 

which, for notational convenience, is written as .  As before, a 252-day trading year is 
assumed, and business days between the current time  t and expiry    are counted. 
 
Let k,C  be the present value of the call, and  k,CE  be the expected value of the call at 

expiry.  Under the risk-neutral assumptions, all assets return the risk-free rate = 
 *rexp k , therefore, the expected value of the call in present-value terms would be  

 
    kk,k, rexp*CC  E  

 
For expositional ease, let   kk, rexp  , so the present value of the call would be 

 
(1)   k,k,k, *CC  E  

 
The call has value if the futures price at expiry is greater than its strike price  kx ; 

otherwise, it will expire worthless.40  This can be expressed as 
 

(2)  0,xfmaxC kk,k,   , so 
 

(3)      k,kk,k,k,k, *,xfmax*CC   0EE    

 
Let  kk, xfp  Prob1 , which would render 00  k,k, *C    

 
Let  kk, xfp  Prob , then   k,kk,k, *xfC   E  

 
Collecting the mutually exclusive probabilities, yields 
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         k,kkk,k,k, *xxf|fppC   E01 , which reduces to 

 
(4)       k,kkk,k,k, *xxf|fpC   E  

 
Concentrating specifically on the probability  kk, xfp  Prob , the second term in 

brackets above is kx*p , which is simply the strike price  kx  times the probability the 

kth-nearby futures price is greater than the call option’s strike price (a constant value) at 
the expiry of the option (ignoring the present-value discount factor).  Given the log-
normal price assumption, this is equal to 

     


kk x
k,k,kk,

x
k,kkk,kk dffL*xdffLxxfxp*x    Prob* , where, 

  k,fL  log-normal probability density function. 

 
Recall from the derivation above, that the mean and variance of the price-relative scale 
proportionately with time in the geometric Wiener process assumed for futures prices, so  

 

    zexpff kkk,tk,  * E , therefore,  

 

(5)   kkkk,t xzexpfp  * Prob  

 
Going back to the “z” transformation, so as to work with a standard normal random 
variable,  

 

     kkkk,t /xflnzp   /Prob , and, this is equal to 

 

(6)      kkkk,t /xflnzp   /Prob  

 
Recalling   022   /kk above,  22 /kk   , thus 

 

(7)        kkkk,t //xflnzp 2 /Prob 2 , so  
 

(8)          
 







  kkkk,t

k

//xfln
k

x
k,k,k dz/zexp*/xdffL*x 2 / 22

 22  

To be consistent with Black’s (1976) notation, let  
 

(9)       kkkk,t //xflnd 2 / 2
1  , thus (7) can written as 

 

(10)   21 Prob ddzp k   , i.e.,  

 

(11)       kkkk,t //xflnd 2 / 2
2  , and equation (8) can be written as 
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(12)    2 d*xdffL*x k
x

k,k,k
k

 


, where  

 
    Cumulative normal distribution 

 
From this derivation, we see that the probability the terminal futures price exceeds the 
strike price of a given option is equal to the cumulative normal density of the “d2” term 
above – i.e,    2Prob dxf kk,   . 

 
This is an especially useful result: It allows us to specify the probability the underlying 
futures price against which a call option is written will exceed a given strike price, at the 
expiry of the option.  This is useful in assessing the market’s probability density 
functions for given prices.   
 
For example, given the underlying futures price and the implied volatility for a given 
options contract, say, the at-the-money contract for December 2009 WTI futures, what is 
the probability this will exceed $100 per barrel?3  On July 31, 2009, with the EIA-
calculated December 2009 WTI five-day futures average at $71.36 per barrel and the 
calculated five-day implied volatility for December 2009 options at 45.33 percent, this 
likelihood was 33.67 percent. 
 
For natural gas, the comparable statistics were: December 2009 EIA-calculated futures 
$5.32 per MMBtu for the Henry Hub futures average price and 56.40 percent for implied 
volatility.  The likelihood on July 31, 2009, that the December 2009 natural gas futures 
would settle over $10.00 per MMBtu was 25.59 percent.41 
 
This result for  2d  also is used in the derivation of the Black commodity option pricing 
model, which is given in Appendix III below. 



Energy Information Administration/Short-Term Energy Outlook Supplement — October 2009 

25 
 

Appendix III: Black’s Commodity Option Formula 
 
 The Black commodity option pricing model for calls is 

 

kC ,  =       21 d*xd*f kk,tk,   , where 

 

kC , = Present value of European Call written on futures contract with 

price ktf ,  

 
  = Cumulative normal probability density function with  

 
 21   and dd  as before in Appendix  II 
 

k,  = )*exp( kkr  = present-value discount factor, employing the risk-

free interest rate 
 

ktf ,  = observed kth-nearby futures contract’s value at time t, k = 1, 2, … n 

 

kx  = strike price corresponding to an option written on the kth-nearby 

futures contract 
 

2
k  = variance of the returns on the kth-nearby futures contract 

 

k  = volatility  

 

k  = time to expiration of the kth-nearby option contract (as a percent of a 

252-day trading year) 
 

Black’s model for Puts (P kt , ) can be solved using the put-call parity relationship42 

 

kP ,  =       12 d*fd*x k,tkk,   . 
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End Notes 
 
1 See Hodge, et al, (2009, pp. 4 – 5).  See also Clews, et al, (2000), and Bernanke (2004a and 2004b, p. 2). 
 
2 See endnote 30 and 34 below. 
 
3 Source: New York Mercantile Exchange. See NYMEX Light Sweet Crude Oil futures and NYMEX 
Natural Gas futures for additional detail on these contracts and markets. Physically and financially settled 
contracts are traded on the NYMEX.  In NYMEX’s natural gas markets, the financially settled options 
allowing exercise only upon expiry (i.e., the European-style options) have higher volume and open interest 
(i.e., contracts that have not been extinguished by delivery or offset) than the options settling into a 
physically delivered futures contract.  NYMEX uses the financially settled European-style options as to 
determine the volatility of the less liquid American-style options that settle into the underlying futures 
contract for its daily margining purposes.  Given the Exchange uses the deeper options markets to 
determine the volatility against which the financially settled and settlement-into-futures options to 
determine daily margins, the EIA model effectively uses the European-style option’s volatility to estimate 
the volatility parameter of the expected natural gas price distribution.  The model is developed beginning in 
Section 4.  See NYMEX Monthly Volumes for data on energy futures trading volume.  See Commodity 
Futures Trading Commission, Commitments of Traders reports, for detail on open interest in WTI and 
natural gas futures. 
 
The IntercontinentalExchange(R), or ICE, is a competitor of the NYMEX, and operates the Brent Blend 
futures market, which is the benchmark for North Sea crude oil.  ICE calculates its futures settlements 
based on the average price of trading in the 21-day North Sea Brent-Forties-Oseberg-Ekofisk market in the 
relevant delivery month as reported and confirmed by the industry media.  See ICE OTC, ICE Crude Oil, 
for additional information.  ICE also trades financial contracts settling against NYMEX WTI futures.  In 
addition, the ICE operates natural gas futures and OTC markets referencing the NYMEX futures and other 
indices for settlement purposes.  See ICE Homepage (https://www.theice.com/) for additional detail. 
 
4 Commodities trade in four distinct markets: futures, forwards, spot and over-the-counter derivatives 
markets.  We discuss futures at length in this article.  The other three markets are characterized by bilateral 
contracting and individual collateral requirements that are negotiated between counterparties – i.e., there is 
no clearinghouse interposition between buyer and seller in these bilateral markets.  Buyers and sellers take 
clearinghouse credit risk trading futures; however, in the bilateral markets they take counterparty credit 
risk.  In forward markets -- e.g., a long-dated natural gas physical sale – contracts are traded between 
unique counterparties and payment is made per contract terms after delivery occurs (there is no requirement 
contracts be marked to market, as is the case for futures, although there may be collateral requirements).  
These principal-to-principal contracts can incorporate standard terms and conditions, but also allow for 
customized terms.  “Spot” contracts literally specify on-the-spot delivery – i.e., immediate or very-close-to-
immediate – delivery of a commodity, for which payment is made shortly thereafter.  Financially settled 
derivatives – e.g., swaps and options – typically are traded in the over-the-counter (OTC) markets.  OTC 
contracts typically reference generally accepted pricing indices for oil or gas against which the derivatives 
settle.  OTC markets also trade derivatives contracts that reference futures settlement prices.  For 
discussions of spot, forward and futures markets, see Black (1976), Williams (1989), and Duffie (1989).  
See Hull (1997), Commodity Futures Trading Commission (September 2008), and Interagency Task Force 
on Commodity Markets (2008) for discussions of futures and OTC markets. 
 
On March 16, 2009, the Commodity Futures Trading Commission (CFTC), the U.S. futures markets 
regulator, approved rules and amendments increasing oversight of so-called Exempt Commercial Markets 
(ECMs), on which principal-to-principal transactions occur via electronic trading platforms.  These rules 
implemented provisions of the CFTC Reauthorization Act of 2008, creating a new regulatory category, 
ECMs with significant price discovery contracts (SPDCs).  These electronic trading facilities are now 
subject to additional regulatory and reporting requirements.   

http://www.cmegroup.com/trading/energy/crude-oil/light-sweet-crude_contract_specifications.html
http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contract_specifications.html
http://www.cmegroup.com/market-data/files/NYMEX_Monthly_volumes-2009.pdf
http://www.cftc.gov/MarketReports/CommitmentsofTraders/index.htm
https://www.theice.com/publicdocs/ICE_Crude_Oil.pdf


Energy Information Administration/Short-Term Energy Outlook Supplement — October 2009 

27 
 

                                                                                                                                                 
 
The overall size of the bilateral OTC oil market is difficult to gauge; the Bank for International Settlement 
(BIS) estimates total notional OTC commodities contracts outstanding in 2008 stood at $4.4 trillion, down 
by 66.5 percent from 2007 levels.  However, the BIS does not break energy contracts out separately.  See 
Bank for International Settlements (May 2009, p.3), for additional information. 
 
The U.S. Congress enacted the Food, Conservation, and Energy Act of 2008 on May 22, 2008, which 
reauthorized the CFTC until 2013, and gave it additional regulatory and enforcement tools to regulate the 
futures industry, particularly transactions in energy products.  Hearings into energy futures market 
regulation were conducted in late July 2009 by the CFTC – see CFTC’s Hearing on Speculative Position 
Limits in Energy Futures Markets, July 29, 2009, for additional information. 
 
5 For NYMEX’s WTI crude oil futures and Henry Hub natural gas futures specifications, see Light Sweet 
Crude Oil Futures and Natural Gas Futures.  See NYMEX Market Information for articles concerning 
NYMEX futures markets published by the Exchange. 
 
6 For complete specification of the NYMEX options, see Light Sweet Crude Oil options and Natural Gas 
options. 

7 See Connexions "Brownian Motion" module by Jason Holden and Kevin Kelly.  The Brownian-motion 
process is named in honor of the Scottish botanist Robert Brown.  Holden and Kelly note: “The first person 
to put forward an actual theory behind Brownian motion was Louis Bachelier, a French mathematician who 
proposed a model for Brownian motion as part of his PhD thesis in 1900.”  Brownian motion, Holden and 
Kelly note, is a mathematical description of “the random movements of minute particles upon immersion in 
fluids.  As Brown once noted in his observations under a microscope, particulate matter such as, for 
example, pollen granules, appear to be in a constant state of agitation and also seem to demonstrate a vivid, 
oscillatory motion when suspended in a solution such as water.”  Bachelier arrived at his groundbreaking 
formulation studying price behavior in French financial markets.  

8 Working was referencing his 1949 article, “The Investigation of Economic Expectations.” Working also 
published “A Random-Difference Series for Use in the Analysis of Time Series,” in 1934, which showed 
that price randomness is to be expected if markets are efficient.  See Dimson and Mussavian (1998, pp. 91-
193), who note Working’s findings and others related to random-walk theories were overlooked by 
economics researchers until the late 1950s.  For a discussion of the evolution of the Efficient Markets 
Hypothesis to its modern appreciation see Lo (2007).  Engle (2004) has an excellent development of how 
markets process “news” vis-à-vis volatility beginning on p. 407.  This was Engle’s Nobel lecture; he was 
awarded the Nobel Prize in 2003 for his contributions to understanding and modeling volatility, specifically 
via his development of the autoregressive conditional heteroskedasticity (ARCH) model and its progeny. 

 
9 Samuelson’s proof showed that a futures contract’s expected value is equal to the currently observed 
futures price.  This is known as the “martingale” property and is used extensively in modern finance.  
Samuelson was instrumental in introducing the mathematics of random processes to the economics 
profession in the late 1950s, according to Dimson and Mussavian (1998). 
 
10 Merton and Scholes received the Nobel Prize in Economic Sciences in 1997 for their path-breaking 
work, which has been applied and extended throughout finance and economics.  Black died in 1995; the 
award is not presented posthumously.  See Merton (1998) and Scholes (1998) for their Nobel lectures. 
 
11 See Cox and Rubinstein (1985,  Chapter 5, section 8, beginning on p. 215): “How changes in the 
variables affect Black-Scholes option values.”  In these models, there are no restrictions on short selling in 
the construction of risk-free portfolios; there are no taxes, transactions costs or arbitrage opportunities 
available to market participants.  See Hull (1997, p. 236) for complete listing of assumptions in B-S-M.  
See Malone (2002), for a survey of studies where various assumptions in the B-S-M model are relaxed. 
 

http://www.cftc.gov/PressRoom/Events/oeaevent072909.html
http://www.nymex.com/lsco_pre_agree.aspx
http://www.nymex.com/lsco_pre_agree.aspx
http://www.nymex.com/ng_pre_agree.aspx
http://cnx.org/content/m14354/1.3/
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12 The Wiener process is named after the American mathematician Norbert Wiener.  See Jerison and 
Stroock (1995), and Mandrekar (1995).  This is also known as a geometric Brownian motion (GBM). 
 
13 Under the assumptions of their model, B-S-M showed a risk-free portfolio could be constructed using 
continuously traded stocks and options, which would earn the riskless rate of return.  See Hull (1997, p. 
236 for list of assumptions.)  B-S-M’s arbitrage-based proof paved the way for further innovations in 
options theory (see, e.g., Margrabe, 1978). 
 
14 In the present note, for example, we employ, inter alia, Ogawa’s derivation (1988), which follows the 
risk-neutral valuation methodology developed in Cox-Ross-Rubinstein (1979).  The C-R-R article provides 
a more tractable alternative to deriving the B-S-M (1973) and Black (1976) results.  C-R-R note in their 
article they use “elementary mathematics,” i.e., a binomial tree model, to derive the option-pricing 
equation, which contains the B-S-M formula as a limiting case, whereas B-S-M and Black employ “quite 
advanced” stochastic calculus to derive their result.   
 
Musiela and Rutkowski (2005) provide an in-depth development of the risk-neutral methodology, also 
known as the “martingale” method.  See Melick and Thomas (1992 and 1998) for examples of how central 
banks expand the C-R-R and Cox-Ross (1976) techniques to recover market-derived probabilities vis-a-vis 
assessing monetary policy innovations.   For a discussion of risk preference, see Fama and Miller (1972, 
particularly Chapter 5), and Musiela and Rutkowski (2005, Chapter 1). 
 
15 See Dimson and Mussavian (1999, p. 1762) for an excellent discussion of the development and evolution 
of asset-pricing models, including C-R-R’s.  They note: “The Cox-Ross-Rubinstein model has the 
advantage that it can easily be adjusted to price other derivatives, such as American puts, which are 
considerably harder to evaluate in the Black-Scholes framework.  This approach is immensely popular, not 
only in the classroom buy also among practitioners.”  
 
16 The lognormal assumption for asset prices, which translates into a normal assumption for log returns, has 
been a source of debate since at least the early 1960s.  Numerous researchers have noted the distribution of 
daily returns of many assets is leptokurtic, i.e., “fat-tailed” and peaked.  Jackwerth (2004, pp. 39 - 40) 
notes: “Two well-known reasons could be the cause.  First, the return distribution may not be lognormal but 
leptokurtic.  Second, a return distribution may be nonstationary over long periods.  Returns are likely to be 
nonstationary if the economy fundamentally changes.  … Over the 1928-96 period, the United States went 
through the depression, World War II, the postwar growth, the oil crises of the early 1970s, the advent of 
the computer revolution, and the modern service economy.  For returns from each of these periods to look 
systematically different from the next period’s returns and for their distributions to exhibit different 
parameter values would not be surprising.  Nonstationarity introduces leptokurtosis even if the true 
underlying distribution is lognormal but with time-varying parameters.”  Jackwerth (2004) tested the 
lognormal assumption for S&P500 returns over the January 1928 – December 1996 period using a 
Kolmogorov-Smirnov test, a nonparametric test to measure whether an observed distribution conforms to 
an assumed distribution.  He found support for the lognormal distribution hypothesis, which depended on 
the type and length of the sample (e.g., daily returns over three-month intervals).  See Jackwerth (2004, pp. 
40 – 43.)  EIA will be conducting similar research on oil and natural gas prices and returns. 
 
17 See Cox and Ross (1976) for a description of the diffusion process.  See also Ogawa (1988, p. 53), and 
Duffie (1989, Chapter 6), “Statistical behavior of futures prices” for a discussion of modeling stochastic 
processes. 
 
18 See Ogawa (1988, p. 55). 
 
19 See Freund and Walpole (1987, particularly Chapter 11). 
 
20 See Freund and Walpole (1987, p. 365). 
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21 See, e.g., Newell and Pizer (2003, p. 64). 
 
22 See Duffie and Gray (1995), for a description and results of using such models. 
 
23 See Appendix III herein for specification of Black’s (1976) model. 
 
24 See Musiela and Rutkowski (2005, p. 222).  Duffie and Gray (1995) and others suggest using a Newton-
Raphson search to determine the implied volatility for each option.  EIA’s model uses implied volatilities 
calculated by the New York Mercantile Exchange (NYMEX), which are used to compute margins for 
options under the Standard Portfolio Analysis of Risk (SPAN) program used by the CME Group, the parent 
company of the NYMEX.  NYMEX inverts Black’s model (1976) to calculate i

k  for calls and puts with 

open interest in each contract month.  See CME SPAN for an overview of CME clearinghouse Standard 
Portfolio Analysis of Risk methodology. 
 
25 Duffie and Gray (1995, p. 52).  GARCH stands for Generalized ARCH model; EGARCH stands for 
Exponential GARCH; see Engle (2004, p. 407).  See also Green and Figlewski (1999), re GARCH 
modeling, who note: “… GARCH has some serious shortcomings as a forecasting tool.  One is that the 
parameters must be estimated from past data, and this frequently requires quite a large data set.”   
 
26 Engle (2002, p.3) cited a working paper by Poon and Granger that later was published as Poon, S.-H., 
and C.W.J. Granger (2003), “Forecasting financial market volatility: A review,” in the Journal of Economic 
Literature, Vol. 41, 2, pp. 478-539.  Poon cites this survey of the literature in the References of Poon 
(2005, p. 211). 
 
27 Szakmary, et al (2003, p, 2173).  The regressions they estimated (p. 2158) generally follow the model 
specified by Canina and Figlewski (1993), and take the form: 
 

,ttt eV[]RV   where  

tRV = Realized volatility at time = t 

  = constant 

tV[]  = coefficient    times either Implied Volatility   tVI  , or Historical Volatility   tVH    

te  = error term 

 

tt
'

tt eHVIVRV   then is estimated to see if including HV adds explanatory power to 

the regression including IV.  Later, GARCH estimates are substituted for HV.  An unbiased 

predictor would have  1or   and 0  ',  . 

 
28 Jorion (1995) found implied volatilities in foreign exchange (FX) options were superior estimators of 
realized volatility (i.e., had superior information content) to GARCH and historical volatility estimators, a 
finding cited by Szakmary, et al (2003) above, and confirmed for the 35 futures markets they examined. 
Among the most robust results they found were those for the oil and natural gas futures options. 
 
Jorion’s findings also were confirmed in Weinberg (2001).  Weinberg’s discussion is an excellent summary 
of the issues surrounding the use of implied volatilities as parameter estimators of the expected distribution 
for prices generally.  According to Weinberg, Jorion’s study was meant to test findings by Canina and 
Figlewski (1993), which showed implied volatility had no explanatory power vis-à-vis realized volatility in 
the S&P 100 index.  The Canina-Figlewski results thus were not confirmed by either Jorion or Weinberg. 
 
Of particular note, Weinberg finds Black-Scholes at-the-money implied volatility provided the best 
estimate of realized volatility among the models tested for FX options, including recently developed 
nonparametric techniques for estimating risk-neutral probability density functions for the underlying 
futures contracts.  The two measures of realized volatility were highly correlated, however.  This suggests 

http://www.cmegroup.com/clearing/risk-management/
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the more parsimonious model, the B-S-M or Black implied volatility for at- and near-the-money options, 
will produce as good an estimate of realized volatility, hence the market’s expectation of price ranges, as 
the more computationally intensive techniques for deep options markets.  See also Figlewski (2008) for 
additional discussion of risk-neutral density estimation. 
 
An area for future study is the exploration of whether these techniques, particularly the use of risk-neutral 
probability distributions recovered from options markets, improve the efficiency of confidence-interval 
estimation for energy markets.  See, for example, Melick and Thomas (1998, 1992).  For an excellent 
summary and literature survey regarding these techniques, see Jackwerth (2004). 
 
29 This would be consistent with weak-form market efficiency – i.e., “… prices fully reflect the information 
implicit in the sequence of past prices,” according to Dimson and Mussavian (1998).  Thus, including 
historical volatility in any estimate of future returns distributions would not add new information to the 
estimate; the implied volatility already subsumes all of the information contained in the historical data and 
statistics.   
 
30 The NYMEX uses its deeper financially settled natural gas options to determine volatility for daily 
margining purposes, which, as a result, are the volatility estimates EIA will use in its model.  NYMEX’s 
financially settled natural gas options allow exercise only upon expiry (i.e., the European-style options).  
These options have nearly 30 times the volume of the options exercisable into a futures contract.  NYMEX 
uses the financially settled European-style options as to determine the volatility of the less liquid American-
style options.  For crude oil options, the NYMEX inverts a Black (1976) model to solve for the implied 
volatility, even though these options are American-style options allowing for exercise at any time during 
the options’ life.  EIA addresses this issue in endnote 34 below; further research is planned in this area as it 
pertains to estimating the parameters of price distributions. 
 
31 See footnote 24 above. 
 
32 See, for example, Figlewski, (2004, particularly p. 79 and 93), and Poon (2005, Chapter 10, p. 115, 
Section 10.1 and 10.2).  Consistent with Szakmary, et al (2003), the EIA model herein requires an option to 
have more than 10 trading days remaining in its life to be used the implied volatility calculation for that 
option.  See Szakmary, et al (2003, p. 2156 and p. 2159 footnote 11).  At- and near-the-money options are 
also used in the EIA model, for the reasons explained by Szakmary, et al (2003, p. 2156-57): They “are 
least affected by the non-normal distribution of returns….”  See Cox and Rubinstein (1985, Chapter 5, 
section 8) re option sensitivities to changes in pricing parameters; at- and near-the-money options have the 
highest “vega” – the first partial derivative of an option’s premium with respect to change in volatility – 
making these the most sensitive options to volatility.  See also Poon (2005, Chapter 10) for a discussion of 
most-sensitive-option techniques and various weighting schemes vis-à-vis proximity to at-the-money 
options employed to extract information from implied volatilities. 
 
33 See Poon (2005, Chapter 10), for a survey of the literature concerning the information content of 
different options (at- versus deep-out-of- and in-the-money options, e.g.).  Considerable research over a 
period spanning more than 30 years into the so-called “volatility smile” – also known as the “skew” – 
suggests market participants price options to different volatilities to capture the leptokurtic, or “fat-tailed,” 
price distribution that historically is observed in asset markets.   
 
Recent research, particularly at central banks, makes use of the skew to estimate the distribution being 
discounted by the options market participants, so as to better gauge the markets’ reactions to monetary 
policy innovations.  See, e.g., Clews, et al, (2000), for a discussion of central banks’ use of risk-neutral 
probability techniques discussed above.  See also Bernanke (2004a, particularly p. 14-5): “Financial data 
provide insight about market uncertainty that is obtainable nowhere else.  For example, the Board’s staff 
regularly analyzes the prices of options on eurodollar futures to estimate the degree of uncertainty that 
market participants have about monetary policy at different horizons.  Indeed, by examining options with 
different strike prices, and under some reasonable additional assumptions, one can produce a full 
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probability distribution of market expectations for the level of the federal funds rate at various dates in the 
future.  Likewise, analysis of various types of options can generate distributions of expectations for 
economic and financial variables ranging from oil prices to the exchange value of the dollar to future stock 
prices.”  Bernanke was referring to the risk-neutral techniques, some of which were refined at the Fed, to 
render distributions with higher densities in the tails than would be produced in a constant-variance model.  
This technique was first applied to oil markets by Melick and Thomas (1992).  This is a topic of future EIA 
research.  See Jackwerth (2004) and Figlewski (2008) for in-depth discussions of these techniques re 
strengths and weaknesses. 
 
34 As an area of future research, EIA will, as part of its benchmarking process, explore whether, for the 
purposes of estimating the variance parameter of a price distribution in the EIA model, there is a 
meaningful difference between the volatility calculated using an American-style model versus a European-
style model.  The standard deviation (volatility) can be tested vis-à-vis its assumed distribution (i.e., it is 
assumed to be chi-square distributed per Freund and Walpole (1987, p. 379 - 380), so for the purposes of 
our model, we can test whether European-style volatility is statistically different from American-style 
volatility in a meaningful way when it comes to parameterizing the distribution.  See Jorion (1995, pp. 512 
– 514) for a discussion of this issue re using a European model to solve American-style implied volatilies 
for foreign exchange futures.  Jorion notes the difference between the models is very small.  EIA will test 
this for energy options in the future. 
 
35 See Jarrow and Rudd (1983, pp. 86 – 93).  See also Ritchken (1987, particularly chapters 5, 6, and 8), re 
the risk-neutral economic argument.  See also Hull (1997, particularly chapters 9, and 11), and Jackwerth 
(2004) for further discussion of risk-neutral techniques. 
 
36 The martingale property (or a close approximation thereof) for oil prices was demonstrated in Hamilton 
(2009a, pp. 179 – 206).  Hamilton estimated several models for quarterly crude oil price changes and price 
levels over the period 1970 – 2008 and concludes, “… the broad inference with which we come away is 
that the real price of oil is not easy to forecast.  To predict the price of oil one quarter, one year, or one 
decade ahead, it is not at all naïve to offer as a forecast whatever the price currently happens to be” (p. 
181).  Later, Hamilton (2009a, p. 184) observes, “It is sometimes argued that if economists really 
understand something, they should be able to predict what will happen next.  But oil prices are an 
interesting example (stock prices are another) of an economic variable which, if our theory is correct, we 
should be completely unable to predict.” 
 
37 See Jarrow and Rudd (1983, p. 89). 
 
38 See Ritchken (1987, Chapter 6, beginning on p. 118) re the representation of the geometric Wiener 
process and the linear scaling of the mean and variance. 
 
39 This derivation follows Ogawa (1988 pp. 54-55); Jarrow and Rudd (1983, pp. 90-92); and Ritchken 
(1987, pp. 173-74). 
 
40 This is a European-style option, i.e., it can be exercised only at expiry.  The NYMEX trades American-
style options for crude oil.  However, Merton (1973) shows the European and American calls typically 
have the same value; since a call typically is worth more alive than dead it does not pay to early exercise. 
 
41 See Bentley Trading Room for tips on using Excel functionality to calculate the  2d  term, i.e., the 

cumulative normal density (normsdist) function. 
 
42 See Ogawa (1988, pp. 54-56), and Ritchken (1987, pp. 173-74) for derivations.  See Hull (1997, Chapter 
12, particularly pp. 273-80) re put-call parity. 
 
 

http://www.bentley.edu/trading-room/documents/optionpricing.pdf
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