Measuring Energy Demand

Christiane BaumeisterDimitris KorobilisThomas K. LeeUniversity of Notre DameUniversity of GlasgowU.S. EIANBER and CEPRVIII CEPRVIII CEPR

Workshop on Financial and Physical Energy Market Linkages U.S. Energy Information Administration September 17, 2019

Motivation

- Alquist, Kilian, and Vigfusson (2011) showed that a VAR model of the global oil market can beat the no-change forecast for oil prices at short horizons (1-6 months)
- Model includes past values of
 - real refiner's acquisition cost of imported crude oil (RAC)
 - > percent change of global crude oil production
 - change in global crude oil inventories
 - > proxy for global real economic activity
- Proxy for global activity: Kilian REA index
 - \succ coding error
 - recently extremely volatile
 - \succ at odds with anecdotal evidence

Outline

- Revisit evidence for forecasting performance
 - corrected index and other transformations of shipping costs
 - ➢ updated evaluation period
 - Brent price instead of RAC
- Compare with alternative measures for monthly global real economic activity proposed in the literature:
 - World industrial production index (Baumeister and Hamilton, 2019)
 - Factor extracted from a panel of real commodity prices (Delle Chiaie, Ferrara, and Giannone, 2017; Alquist, Bhattarai, and Coibion, 2019)
 - ➢ World steel production (Ravazzolo and Vespignani, 2019)

Beyond Price Forecasts

- Construct global activity factor from a large dataset where variable selection is guided by determinants of energy demand
- Enhance understanding of developments on the demand side
 ⇒ forecast global petroleum consumption
 ⇒ use expected growth as indicator of future energy demand

Global dataset

- Broad coverage in terms of variables and countries
- 8 groups of variables
 - 1. Macroeconomic variables

world IP, steel production, PMI, CFNAI, Eurocoin, business and consumer confidence indices, retail trade, unemployment rate, leading indicators, capacity utilization, consumption expenditures

2. Financial variables

stock prices for energy-intensive sectors, exchange rates, financial conditions indicators, interest rates and spreads

3. Real commodity prices

aluminum, copper, zinc, rubber, tin, cotton, palm oil, soybeans, wheat

4. Uncertainty measures

geopolitical risk, volatility of oil, gasoline and natural gas prices, VIX

Global dataset

5. Weather-related data

El Nino, heating-degree days, cooling-degree days, global temperature anomalies

6. Transportation sector

passenger car registration, vehicle production, miles traveled, rail freight

7. Expectations measures

expected change in income, unemployment, business conditions, interest rates, index of consumer expectations, spread between long-run and short-run price expectations of oil, gasoline, heating oil and natural gas

8. Energy-related data

electricity consumption, energy production and distribution, carbon dioxide emissions, gasoline and petroleum stocks

\Rightarrow 195 variables at monthly frequency

Forecasting Environment

- Recursive out-of-sample forecasting

 ⇒ first estimation period: 1973M1-1991M12
 ⇒ evaluation period: 1992M1-2018M8
- Mean-square prediction error (MSPE)
 ⇒ loss function: level of oil price and consumption
 ⇒ benchmark for real oil price: random walk
 ⇒ benchmark for consumption: AR(12) model
- Forecast horizons h = 3, 6, 9, 12, 18, 24 months ahead
- Lag length p = 12

Forecasting the Real Refiner's Acquisition Cost

Monthly	Kilian	REA	PC real	World IP	PC real	PC steel	Global
horizon	index	Shipping	shipping	index	commodity	production	activity
	(REA BDI)	Insight	costs		prices		factor
			Evaluation	period: 199	92.1-2010.6		
1	0.679**	0.679 **	0.703**	0.657**	0.723**	0.694**	0.725**
3	0.779	0.777	0.806	0.728	0.780	0.776	0.839
6	0.989	0.972	0.956	0.867	0.912	0.925	0.981
9	1.115	1.087	1.025	0.988	1.048	1.000	1.025
12	1.099	1.093	0.992	0.975	1.021	0.940	0.976
18	1.083	1.068	0.962	0.975	0.956	0.946	0.942
24	1.122	1.133	1.071	1.095	0.995	1.054	1.028

Recursive MSPE ratios relative to no-change forecast

Notes: **Bold** indicates that model performs better than random walk; Red indicates the best model among the shipping indices; Blue indicates the best model among the alternative global economic activity indicators.

Forecasting the Real Refiner's Acquisition Cost

	Recursive MSPE ratios relative to no-change forecast									
Monthly	Kilian	REA	PC real	World IP	PC real	PC steel	Global			
horizon	index	Shipping	shipping	index	commodity	production	activity			
	(REA BDI)	Insight	costs		prices		factor			
			Evaluation	period: 199	92.1-2010.6	-)				
1	0.679 **	0.679 **	0.703**	0.657**	0.723**	0.694**	0.725**			
3	0.779	0.777	0.806	0.728	0.780	0.776	0.839			
6	0.989	0.972	0.956	0.867	0.912	0.925	0.981			
9	1.115	1.087	1.025	0.988	1.048	1.000	1.025			
12	1.099	1.093	0.992	0.975	1.021	0.940	0.976			
18	1.083	1.068	0.962	0.975	0.956	0.946	0.942			
24	1.122	1.133	1.071	1.095	0.995	1.054	1.028			
			Evaluation	period: 199	92.1-2018.8	5				
1	0.865	0.824*	0.804 *	0.765**	0.781**	0.795**	0.806*			
3	0.955	0.912	0.911	0.852	0.841	0.911	0.963			
6	1.074	1.041	1.008	0.972	0.933	1.025	1.094			
9	1.154	1.110	1.044	1.061	1.036	1.067	1.113			
12	1.159	1.117	1.031	1.069	1.038	1.045	1.074			
18	1.087	1.042	0.997	0.979	0.948	0.967	0.950			
24	1.045	1.010	1.000	0.941	0.925	0.946	0.896			

Notes: **Bold** indicates that model performs better than random walk;

Red indicates the best model among the shipping indices;

Blue indicates the best model among the alternative global economic activity indicators.

Forecasting the Real Brent Price

Recursive MSPE ratios relative to no-change forecast: 1992.1-2018.8

Monthly	Kilian	REA	PC real	World IP	PC real	PC steel	Global
horizon	index	Shipping	shipping	index	commodity	production	activity
	(REA BDI)	Insight	costs		prices		factor
		Real Refir	ner's Acquis	ition Cost	of Imported	Crude Oil	
1	0.865	0.824*	0.804*	0.765 **	0.781 **	0.795**	0.806*
3	0.955	0.912	0.911	0.852	0.841	0.911	0.963
6	1.074	1.041	1.008	0.972	0.933	1.025	1.094
9	1.154	1.110	1.044	1.061	1.036	1.067	1.113
12	1.159	1.117	1.031	1.069	1.038	1.045	1.074
18	1.087	1.042	0.997	0.979	0.948	0.967	0.950
24	1.045	1.010	1.000	0.941	0.925	0.946	0.896
			Real Bre	nt price of	crude oil		
1	1.075	1.023	0.998	0.946	0.961	0.997	1.003
3	1.072	1.027	1.027	0.953	0.970	1.044	1.084
6	1.172	1.129	1.087	1.060	1.021	1.105	1.174
9	1.208	1.146	1.065	1.088	1.069	1.101	1.149
12	1.215	1.151	1.045	1.070	1.037	1.052	1.079
18	1.161	1.103	1.031	0.994	0.965	0.990	0.978
24	1.095	1.041	1.019	0.938	0.922	0.944	0.910

Notes: **Bold** indicates that model performs better than random walk;

Red indicates the best model among the shipping indices;

Blue indicates the best model among the alternative global economic activity indicators.

Comparing VARs and Bayesian VARs

• Unrestricted least squares vs Bayesian shrinkage methods

	Recursive MSPE ratios relative to no-change forecast: 1992.1-2018.8									
	Kilian index	x (REA BDI)	REA Shipp	oing Insight	PC real shipping costs					
Monthly horizon	VAR(12)	BVAR(12)	VAR(12)	BVAR(12)	VAR(12)	BVAR(12)				
1	1.075	0.983	1.023	0.950	0.998	0.930				
3	1.072	1.063	1.027	1.014	1.027	0.965				
6	1.172	1.158	1.129	1.101	1.087	1.003				
9	1.208	1.211	1.146	1.153	1.065	1.006				
12	1.215	1.237	1.151	1.174	1.045	0.974				
18	1.161	1.179	1.103	1.126	1.031	0.954				
24	1.095	1.092	1.041	1.052	1.019	0.927				

Notes: **Bold** indicates that model performs better than random walk;

Green indicates whether VAR or BVAR does better;

Red indicates the best model among the shipping indices.

Comparing VARs and Bayesian VARs

• Unrestricted least squares vs Bayesian shrinkage methods

	Recursive MSPE ratios relative to no-change forecast: 1992.1-2018.8									
	World IP index		PC real commodity prices		PC steel production		Global activity factor			
Monthly horizon	VAR(12)	BVAR(12)	VAR(12)	BVAR(12)	VAR(12)	BVAR(12)	VAR(12)	BVAR(12)		
1	0.946	0.893 *	0.961	0.896 *	0.997	0.934	1.003	0.925		
3	0.953	0.910	0.970	0.918	1.044	0.983	1.084	0.979		
6	1.060	0.972	1.021	0.967	1.105	1.032	1.174	1.049		
9	1.088	0.999	1.069	1.006	1.101	1.033	1.149	1.054		
12	1.070	0.971	1.037	0.968	1.052	0.983	1.079	1.007		
18	0.994	0.947	0.965	0.932	0.990	0.955	0.978	0.960		
24	0.938	0.922	0.922	0.898	0.944	0.927	0.910	0.913		

Notes: Bold indicates that model performs better than random walk;

Green indicates whether the VAR or BVAR does better;

Blue indicates the best model among the alternative global economic activity indicators.

Production vs Consumption

• Replace oil production with petroleum consumption

	Kilian index	x (REA BDI)	REA Shipp	oing Insight	PC real shipping costs				
Monthly horizon	VAR(12)	BVAR(12)	VAR(12)	BVAR(12)	VAR(12)	BVAR(12)			
1	1.078	0.964	1.017	0.931	0.986	0.918 *			
3	1.075	1.045	1.020	0.998	0.984	0.942			
6	1.164	1.138	1.124	1.091	1.019	0.966			
9	1.237	1.219	1.189	1.164	1.032	0.987			
12	1.287	1.267	1.238	1.209	1.041	0.979			
18	1.242	1.209	1.189	1.160	1.022	0.957			
24	1.152	1.114	1.124	1.081	1.018	0.938			

Recursive MSPE ratios relative to no-change forecast: 1992.1-2018.8

Notes: **Bold** indicates that the model performs better than the random walk;

Green indicates whether the VAR or BVAR does better;

Red indicates the best model among the shipping indices.

Production vs Consumption

• Replace oil production with petroleum consumption

	World IP index		PC real c	ommodity		1 4	Global activity	
			prices		PC steel]	production	factor	
Monthly								
horizon	VAR(12)	BVAR(12)	VAR(12)	BVAR(12)	VAR(12)	BVAR(12)	VAR(12)	BVAR(12)
1	0.932	0.884**	0.943	0.888**	0.951	0.904 *	0.971	0.902 *
3	0.892	0.888	0.938	0.906	0.950	0.943	1.002	0.956
6	0.962	0.932	0.978	0.938	0.984	0.978	1.055	1.008
9	1.028	0.976	1.061	1.002	1.001	0.994	1.060	1.035
12	1.033	0.979	1.061	0.985	0.980	0.977	1.012	1.005
18	0.945	0.943	0.978	0.934	0.943	0.955	0.906	0.956
24	0.911	0.919	0.934	0.903	0.928	0.932	0.860	0.911

Recursive MSPE ratios relative to no-change forecast: 1992.1-2018.8

Notes: **Bold** indicates that the model performs better than the random walk;

Green indicates whether the VAR or BVAR does better;

Blue indicates the best model among the alternative global economic activity indicators.

Does Time Variation Matter?

- Structural changes that shape the demand for energy
 - ➤ shifts in energy intensity of production and consumption
 - \succ changes in the energy mix
 - technological progress
 - changes in capacity constraints
- 2 potential sources of time variation:
 - changes in the dynamic relationship between variables
 - changes in the volatility
- ⇒ Time variation in coefficients detrimental to forecast accuracy
 - BUT stochastic volatility improves long-run forecasts

The Role of Stochastic Volatility

Recursive MSPE ratios relative to no-change forecast: 1992.1-2018.8

Monthly	Kilian	REA	PC real	World IP	PC real	PC steel	Global
horizon	index	Shipping	shipping	index	commodity	production	activity
	(REA BDI)	Insight	costs		prices		factor
			(a) Prod	uction-Based	d Models		
1	0.911**	0.911**	0.913**	0.905**	0.919**	0.924*	0.935*
3	0.972	0.957	0.942	0.942	0.954	0.952	0.962
6	1.024	1.009	0.949 *	0.966	0.963	0.972	0.969
9	1.039	1.022	0.931 *	0.939 *	0.952	0.943	0.951
12	1.046	1.023	0.899 **	0.910 *	0.913**	0.906 *	0.914 *
18	0.940	0.932	0.837**	0.839**	0.831 **	0.844**	0.851**
24	0.827	0.838	0.765**	0.768**	0.767**	0.762**	0.769 **
			(a) Consu	mption-Base	ed Models		
1	0.920*	0.910**	0.907**	0.905**	0.911**	0.912**	0.928**
3	0.958	0.939*	0.909	0.918 *	0.939 *	0.929	0.940
6	1.018	0.987	0.910 **	0.926 *	0.943 *	0.925 *	0.947
9	1.063	1.021	0.897 *	0.911 *	0.937 *	0.909 *	0.937
12	1.072	1.031	0.874 **	0.869**	0.887**	0.864 **	0.898 *
18	0.951	0.928	0.789 **	0.790**	0.783 **	0.791 **	0.815 *
24	0.821	0.811	0.719 **	0.710 **	0.718**	0.710 **	0.717 **

Notes: **Bold** indicates that model performs better than random walk;

Red indicates the best model among the shipping indices;

Blue indicates the best model among the alternative global economic activity indicators.

Petroleum Consumption Forecasts

Recursive MSPE ratios relative to AR(12) benchmark: 1992.1-2018.8

Monthly	Kilian	REA	PC real	World IP	PC real	PC steel	Global
horizon	index	Shipping	shipping	index	commodity	production	activity
	(REA BDI)	Insight	costs		prices		factor
			(a) BVAR(12	2)		
1	1.103	1.084	1.046	1.002	1.054	1.255	1.089
3	1.445	1.397	1.134	1.252	1.173	1.609	1.461
6	2.062	1.994	1.310	1.511	1.335	1.794	1.933
9	2.558	2.463	1.421	1.532	1.440	1.834	2.088
12	3.131	3.018	1.521	1.635	1.523	2.007	2.317
18	3.838	3.658	1.781	1.870	1.759	2.437	2.482
24	4.122	3.870	2.055	2.043	1.977	2.553	2.432
			(b) BVAR(12) with stocha	astic volatility	/	
1	0.968	0.963*	0.962*	0.933**	0.949**	0.954**	0.935**
3	1.073	1.069	1.036	0.984	1.017	1.026	0.992
6	1.213	1.184	1.064	1.009	1.070	1.059	1.000
9	1.274	1.245	1.087	0.995	1.108	1.065	0.955
12	1.369	1.340	1.114	1.013	1.154	1.095	0.946
18	1.561	1.542	1.178	1.048	1.245	1.130	0.976
24	1.645	1.652	1.208	1.052	1.304	1.141	0.950

Notes: **Bold** indicates that model outperforms AR(12); blue indicates best model among set of models.

The Benefits of Variable Selection

- Is more information always better?
 ⇒ dataset contains large number of heterogeneous variables
- Does a subset of variables outperform the large dataset?
 ⇒ variables with highest loadings on factor
 - ⇒ variables with broadest coverage representative of each group
 - Macroeconomic variables: world IP, Conference Board leading economic indicator, OECD consumer confidence
 - Commodity prices: real copper prices
 - Uncertainty measures: global political risk indicator, long-run oil price uncertainty
 - Financial data: MSCI world index, stock returns in transportation sector, real trade-weighted US dollar index
 - Weather-related: El Nino, residential energy demand temperature index
 - ➢ Transportation: OECD passenger car registration, US vehicle miles traveled
 - Expectations: spread between long-run and short-run oil price expectations, index of consumer expectations (Michigan survey)
 - Energy-related: energy production and distribution EU28

The Benefits of Variable Selection

Recursive MSPE ratios relative to benchmark model: 1992.1-2018.8

	Monthly horizon							
	1	3	6	9	12	18	24	
(a) Brent Price Forecasts								
Global activity factor	0.928**	0.940	0.947	0.937	0.898*	0.815*	0.717 **	
16 variables: highest loading	0.912**	0.920	0.926*	0.900 *	0.851 **	0.760 **	0.680**	
16 variables: "broadest coverage" in groups	0.922**	0.932	0.939	0.923	0.878*	0.801*	0.702**	
(b) Consumption Forecasts								
Global activity factor	0.935**	0.992	1.000	0.955	0.946	0.976	0.950	
16 variables: highest loading	0.949 **	0.997	1.010	0.984	1.016	1.049	1.034	
16 variables: "broadest coverage" in groups	0.936**	0.948	0.930	0.870*	0.872	0.909	0.883	

Notes: **Bold** indicates that model outperforms benchmark model (no-change forecast for the Brent price, AR(12) for consumption).

The Global Activity Factor

• Factor extracted from 16 variables with broadest coverage representative of each group for the period 1973.2-2019.8

The Role of Real-Time Data Constraints

- 3 aspects:
 - data revisions
 - ➤ delays in data availability
 - ➤ some variables did not exist in real time
 - \Rightarrow mimic real-time nature of lags in data releases
 - \Rightarrow propose simple now-casting techniques to fill gaps
- Baumeister and Kilian (2012): timely availability of more accurate data on nominal oil price has highest payoff
 ⇒ Brent price is available in real time

	Real Bre	nt Price	Global Petroleum Consumption			
Monthly horizon	Pseudo real time	Real-time data	Pseudo real time	Real-time data		
1	0.922**	0.926*	0.936**	0.945**		
2	0.929*	0.937	0.925**	0.913**		
3	0.932	0.941	0.948	0.964*		
4	0.940	0.959	0.925	0.924**		
5	0.938	0.952	0.937	0.922**		
6	0.939	0.958	0.930	0.931		
7	0.935	0.957	0.904	0.873**		
8	0.923	0.941	0.894	0.871 **		
9	0.923	0.937	0.870 *	0.920		
10	0.912	0.918	0.894	0.904*		
11	0.898 *	0.899*	0.902	0.917*		
12	0.878^{*}	0.886*	0.872	0.927		
13	0.867*	0.873*	0.889	0.907		
14	0.856*	0.854*	0.882	0.906*		
15	0.837*	0.835*	0.885	0.905		
16	0.816**	0.821**	0.897	0.896		
17	0.806**	0.806**	0.910	0.935		
18	0.801 *	0.794**	0.909	0.936		
19	0.785 **	0.785**	0.900	0.905		
20	0.766**	0.768**	0.914	0.923		
21	0.755**	0.745**	0.890	0.910		
22	0.733**	0.729**	0.889	0.910		
23	0.716**	0.715**	0.879	0.904		
24	0.702**	0.698**	0.883	0.907		

Growth in Expected Demand over Next Year

• Indicator of expected demand pressures

• Computed as difference between the 13-month-ahead and the 1-month-ahead forecast of petroleum consumption

Price Pressure Measures

- Assess the probability that the price of oil will exceed or fall below last year's price range
 - ⇒ construct an index that measures the likelihood that the expected oil price will rise above (or drop below) recent price band over the next 12 months on average:

$$PPM = \sum_{h=0}^{12} w_h \Pr(p_{t+h|t}^{oil} > p_{t:t-12}^{oil})$$

Price Pressure Measures

Expected Price Pressures in June 2014

- Between June 2013 and June 2014 the Brent price fluctuated between \$103 and \$112
- \Rightarrow What was the predicted probability that Brent would stay within that range, exceed it, or fall below it?

Jan

2016

Jun

2016

In June 2016, the Brent price was \$48.

Expected Price Pressures in May 2004

- Between May 2003 and May 2004 the Brent price fluctuated between \$26 and \$38
- ⇒ What was the predicted probability that Brent would stay within that range, exceed it, or fall below it?

• In May 2006, the Brent price was \$70.

Key Takeaways

- For short-term oil price forecasts, consumption-based model with world industrial production performs best
 ⇒ MSPE reductions of 12% 1-month ahead and 7% 6-month ahead
- For long-term oil price forecasts, stochastic volatility is an important feature

⇒ MSPE reductions of 29% at the 2-year horizon (across indicators)

- For forecasting the real price of Brent and global petroleum consumption jointly, the best model uses a global activity factor extracted from a small set of key determinants of energy demand
 - \Rightarrow indicator of expected demand
 - \Rightarrow expectations about price pressures